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Abstract: Analysis of plant competition is a major issue in ecology and forestry, as it influences plant growth
and plant-environment interactions. Competition is expected to be lower in the sparse tree stratum of open
woodlands and agroforestry systems than in closed forests. We have analyzed competition in open woodlands
of Quercus ilex in the Iberian Peninsula by studying a 10-year diameter growth increment from collected samples
and from consecutive National Forest Inventories. Density was the competition index selected in all models,
outperforming more complex distance-dependent indices. The models showed that competition is playing a role
in growth but that the covariate most correlated with growth is age or dbh as a surrogate of age. Therefore,
below-ground competition is likely to be limiting tree growth, but below-ground competition is lower in open
woodlands compared with that in denser forests and thus potential growth (which is strongly linked to age) is
almost expressed. Model behavior was improved when data were fitted directly using generalized linear models,
which do not require transforming of the dependent variable. Our results showed that modeling growth with the
gamma probability distribution resulted in better models compared with Gaussian linear models. Gamma
regression offers a great potential for many forestry applications. FOR. SCI. 55(4):310–322.
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THERE ARE MANY STUDIES analyzing competition
among trees in closed forests (e.g., Biging and Dob-
bertin 1995, Canham et al. 2006), where density is

usually greater than in agroforestry systems and open wood-
lands. All agroforestry systems have a low-density woody
stratum, in which trees are likely to compete with each other
and with the herbaceous and/or shrub layers for below-
ground resources. Below-ground interactions are complex
and poorly understood. Despite this potential source of
competition, low-density trees are generally thought to ex-
hibit free growth, which in traditional forestry would be
considered as potential growth (Hasenauer 1997).

Agrosilvopastoral systems are one special type of agro-
forestry system; these include the Quercus spp.-dominated
open woodlands of West Iberia (called “dehesas” in Spain)
that cover more than 3,000,000 ha. Quercus ilex L. (holm
oak) is the most common tree species in the ecosystem and
probably the most important and widespread tree species in
the Mediterranean Region (Barbero et al. 1992). These oak
stands are not suitable for traditional, intensive forestry
because of the poor sandy soils and Mediterranean variable
dry climate in which they thrive. The origin and history of
the dehesas are complex. The specific management applied
through time has modeled the landscape, resulting in the
low-density, open tree stratum encountered today. As in
other agroforestry systems, trees are regularly pruned (San
Miguel 1994).

Diameter increment is mostly related to three factors:
age, site index (as a surrogate of fertility), and competition
(Lessard et al. 2001). Competition can be defined in various

ways, emphasizing different variables. If one bears in mind
that competition is never totally symmetric or asymmetric,
it can be broadly classified as either asymmetric or sym-
metric. These classifications are usually applied to compe-
tition for light and soil resources, namely nutrients and
water (Schwinning and Weiner 1998). In crowded systems,
asymmetric competition for light is, in general, the primary
cause of size inequality. In agroforestry systems the tree
stratum is not crowded; therefore, symmetric competition
(soil moisture) is likely to be the most important competi-
tive factor affecting tree growth. In particular, in Mediter-
ranean ecosystems, below-ground competition for water is
generally more likely to be a principal growth-limiting
factor than crown competition for light or competition for
nutrients (e.g., Mayor and Rodá 1994, Ogaya and Peñuelas
2007). Competition among species is not symmetrical, with
different species competing distinctly for soil resources
(Canham et al. 2006). Competition can also influence the
way trees respond to climate (e.g., Cescatti and Piutti 1998);
thus, analysis of competition is interesting not only from a
commercial point of view but also for conservation.

The most commonly used competition indices assume
that there is a relationship between the size and proximity of
competitor trees and the distribution of resources (Larocque
2002). Tree competition indices used in forestry can be
generally classified as distance dependent or distance inde-
pendent. Distance-dependent indices can be further subclas-
sified as area overlap indices, point-density indices,
distance-weighted size ratio indices, and area-potentially-
available indices (Tomé and Burkhart 1989, Biging and
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Dobbertin 1995, Larocque 2002). Many authors’ results
suggest that more complex distance-dependent indices are
not better than distance-independent indices (e.g., Martin
and Ek 1984, Biging and Dobbertin 1995) although there
are exceptions (e.g., Mailly et al. 2003, Stadt et al. 2007).
The search radius to decide whether a neighbor is compet-
ing or not can be a crucial issue (Biging and Dobbertin
1992). Often indices calculated from crown features are
very much correlated with growth (Biging and Dobbertin
1992, 1995, Miina and Pukkala 2000), but those cannot be
reliably calculated in pruned stands, common in some agro-
forestry systems. The conclusion from the numerous studies
analyzing competition is that there is no superior competi-
tion index (Tomé and Burkhart 1989, Biging and Dobbertin
1995), but, depending on the stand structure and particular
environment, certain indices will be better than others.

There is a wide variety of different models in the liter-
ature to describe diameter growth, which is a key variable in
forestry modeling (Porte and Bartelink 2002). Most indi-
vidual tree diameter models used can be ascribed to two
categories, namely empirical or semiempirical (Vanclay
1994). Examples of empirical models can be found in Miina
(1993), Andreassen and Tomter (2003), and Mailly et al.
(2003), whereas semiempirical examples are found in Big-
ing and Dobbertin (1995), Canham et al. (2006), and Stadt
et al. (2007). Empirical models are generally linear in their
parameters, although usually linearity is achieved after
some transformation (most often logarithmic) to achieve
normality and mimic the nonlinear, sigmoid shape of plant
growth (Wykoff 1990, Schwinning and Weiner 1998).
Semiempirical models have the advantage that their foun-
dations are in biological theory, but they require the esti-
mation of potential growth, which is difficult and adds an
extra source of error (Wykoff 1990, Vanclay 1994).
Semiempirical models are more complex than empirical
models because they are nonlinear. In addition, e.g., Martin
and Ek (1984) and Sánchez-González et al. (2006) did not
detect an improvement in accuracy using semiempirical
models. Other statistical methods (generalized additive
models, classification and regression tree analysis, and ar-
tificial neural networks) used in ecological modeling
(Guisan and Zimmermann 2000) have been used for mod-
eling stand characteristics in Inventory data (Moisen and
Frescino 2002). Generally, they were not an improvement
on classic linear models, but we do not know of any study
using them to model diameter increment. Generalized linear
models (GLMs) are a class of linear models that relax the
Gaussian assumption. Therefore, GLMs are able to fit dif-
ferent shapes of data, including data with heterogeneous
variances and probability distributions such as the Gaussian
(normal), Poisson, gamma, and negative binomial (McCul-
lagh and Nelder 1989). Gaussian and Poisson models are
frequently used in forestry and ecology, but gamma and
negative binomial models, although they have been used in
other biological sciences, are not yet very common in stud-
ies of ecology and forestry (e.g., Guisan and Zimmermann
2000, Gea-Izquierdo et al. 2007, Salway and Wakefield
2007).

The objectives of this study were to analyze whether it is
true that holm oaks in this system exhibit free growth and to

what extent competition affects diameter growth; to com-
pare different empirical models and discuss whether mod-
eling growth directly with gamma distributions results in
better models than classic log-transformed Gaussian mod-
els; and to check the possibility of using the Spanish Na-
tional Forest Inventory (IFN) for holm oak growth model-
ing, as these data are a cheap (for the user) and interesting
source of information (Moisen and Frescino 2002).

Materials and Methods
Study Area and Data
Sampled Data

The two directly sampled study areas were typical dehe-
sas with acidic bedrock (granites, slates, and cuarcites)
under a Continental Mediterranean climate with mean an-
nual precipitation of approximately 600 mm and summer
drought. Mean annual temperatures at the study areas were
16.0°C at Cáceres (southern most sampled area) and 13.2°C
in Salamanca. Sampled data were collected from 37 plots
generally including 10 trees: 25 plots in Salamanca
(40°37�N, 6°40�W, 700 m above see level) and 12 plots in
Cáceres (39°28�N, 6°11�W, 393 m above see level) (Figure
1). These plots were all included in different holm oak
woodland belts clearcut to construct two freeways. For each
of the 10 trees, we measured distance and azimuth to the
center of the plot, two perpendicular crown radii, total
height and height to crown base, and two perpendicular

Figure 1. Location of the study plots.
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diameters at 1.30 m (dbh). We sampled all holm oaks,
including shrubs which, when calculating indices, were
considered as competing trees having a dbh equal to that of
a treelike holm oak of equivalent crown. This assumption
was made because there were no signs of pruning in recent
years at Cáceres. To reduce bias from sampling design we
corrected the plot radius (Ri) for calculations using Ri � ri

� li, where li � 0.5�(ri/n), where n is the number of trees in
the plot, and ri is the distance of the last tree within plot i
(Cañadas 2000).

To estimate growth, the five central trees of each plot
were pushed down with a bulldozer, and sections at 1.30 m
and at the base were collected. Data are likely to be slightly
biased away from individuals with the widest diameters
(and, hence, probably greatest ages) as the oldest and thick-
est trees tended to be rotten, and only trees with at least one
readable radius were included in the analysis. In total, 168
trees, 115 from Salamanca and 53 from Cáceres, were
included in the analyses (Figure 2). Annual ring width was
estimated as explained in Gea-Izquierdo et al. (2008) and
the sum of the period 1995–2004 (hereafter Incdbh10) was
used as the dependent variable. We considered bark growth
to be negligible compared with dbh growth and hence it was
not taken into account in the analyses. Covariates were
calculated from plot attributes, site index was calculated
from Gea-Izquierdo et al. (2008), and competition indices
were calculated as explained below (Table 1). Covariates
analyzed included dbh2, as growth is likely to be a parab-
oloid with an inflection point (Wykoff 1990).

As a consequence of the previously described character-
istics of the system, we only tested competition indices that
do not depend on crown features, i.e., those based on
distances, crowding, and/or tree diameters. A total of 18
distance-dependent and distance-independent indices were
studied (Table 2). The distance of influence (the distance
within which neighbors are considered to be competing)
used for each index was determined in a preliminary study
(Gea-Izquierdo 2008) comparing fixed distances with rela-
tive distances (from 40 to 140 times the dbh). Density has
not changed much during the last decades in the dehesas
(García del Barrio et al. 2004), and there were no signs of
recent logging in the study area, so we assume that density
was constant during the last 10 years.

IFN Data

In the IFN plots are located systematically in a 1-km grid
and are measured with a periodicity of 10 years. Plots are
circular with four different radii (from 5 to 25 m) where
different tree sizes are sampled. For this study we only used
data from the 10-m radius, analyzing trees with dbh � 12.5
cm. Other studies with similar inventory design have also
selected specific subplots (Canham et al. 2006). By using
only this subset of the data we avoided biases from sam-
pling different sizes in the contiguous radii and we reduced
within-plot data spatial correlation. Because of the differ-
ences in plot design, data collection, and processing we
decided to compare the results derived from fitting models
to our data and those derived from fitting models to the IFN
data independently without mixing the two data sets.

Plots from the provinces of Salamanca, Cáceres, and
Badajoz (Figure 1) were selected. Plots were only selected
if they were holm oak monospecific and of a density lower
than 500 trees/ha. Decreasing density limits (500, 250, and
150 trees/ha) were compared to avoid as much as possible
shrub formations from coppice. Following the previous
criteria and deleting negative increments (5% of the total),
we analyzed 2,819 trees from 1,566 plots (Figure 1). The
difference between dbh in the second and third inventories
was used as a dependent variable, taking as covariates the
plot density, basal area, tree height, Universal Transverse
Mercator (UTM) coordinates, slope, meteorological data
(Sánchez-Palomares et al. 1999), and river basin (the three
last covariates were estimated using a geographic informa-
tion system). No other competition indices were calculated
from the plot design and the inventory data limitations
already described. The holm oak data in IFN are not as
complete as those for other species, as past diameter incre-
ments from increment borers are not available, reducing
modeling possibilities (Trasobares et al. 2004).

Models and statistical analyses

A flow chart is shown in Figure 3 to ease tracking
analyses flow and models comparison. Models were fitted
to 10-year increments for two reasons: to compare with IFN
data and to reduce climatic variability and measuring error,

Figure 2. A, diameter distribution of plots: (i) Cáceres plots in gray bars; (ii) Salamanca plots in black bars; and
(iii) IFN plots in white bars. B, age distribution at 1.30 m.
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as the species is slow-growing. Diameter increment was
approached in two ways: age-dependent models and age-in-
dependent models. This double approach was done to study
the role played by age in the models (potential diameter
growth would imply age explaining the most variance with
null competition) as age estimation in holm oak is generally

impossible for managers. As discussed in the Introduction,
we decided to use empirical models. Exponential or power
models are biologically sound if fitted for the data range
over the growth inflection point (or even before in some
cases [Wykoff 1990]), which is usually located at early
ages, at least in holm oak (Gea-Izquierdo et al. 2008).

Table 1. Sample characteristics

Ciudad Rodrigo Cáceres IFN*

dbh
(cm) Age

Density
(trees/ha)

BA
(m2/ha)

dbh
(cm) Age

Density
(trees/ha)

BA
(m2/ha)

dbh
(cm)

Density
(trees/ha)

BA
(m2/ha)

Mean 28.9 88 117.8 8.5 39.6 116 45.6 5.8 36.8 73.8 5.7
CV (%) 38.8 32.3 39.2 41.9 33.1 31.4 44.3 37.0 44.6 101.2 64.1
Minimum 10.2 26 35.8 4.1 13.9 42 15.3 3.1 13.4 5.1 0.4
Maximum 68.4 175 190.8 16.2 96.8 212 87.3 9.6 108.2 489.6 31.4
n 115 110 25 25 53 46 12 12 2,819 1,566 1,566

dbh, diameter at breast height (1.30 m); BA, plot basal area; age, estimated age in the base; n, sample size; CV, coefficient of variation.
* Data from IFN3: plot radius � 10 m, dbh trees � 12.5 cm, density � 500 trees/ha.

Table 2. List of competition indices used in the study

Index Name Expression Reference

Distance-independent indices
CII1 Plot density (Nn) n/plot area (in trees/ha)

CII2 BA �i�1
n � � (dbhi/2)2

CII3 ddg dbhi/Dmc

CII4 Glover dbhi
2/dbh2 Glover and Hool (1979)

CII5 BAL �j�1
n�1� � (dbhi/2)2 when dbhj � dbhi

CII6r Number of competitors within
r meters (Nr)

Moravie et al. (1999) cited in
Paulo et al. (2002)

CII7r Number of competitors within
r meters such that dbhj � dbhi

Moravie et al. (1999) cited in
Paulo et al. (2002)

CII8r Sum of size of trees within r
meters

�dbhj Steneker and Jarvis (1963) cited in
Paulo et al. (2002)

CII9r Size ratio dbhi/�i�1
n dbhi Daniels et al. (1986) cited in

Paulo et al. (2002)
Distance-dependent indices

CID10 Clark-Evans (�i�1
n min(distij)/n)(2 � �Nn)

(Nn in trees/m2)
Clark and Evans (1954)

CID11 Distance to nearest tree (NN) Moravie et al. (1999) cited in
Paulo et al. (2002)

CID12 Distance to NN such that
dbhj � dbhi

Moravie et al. (1999) cited in
Paulo et al. (2002)

CID13r Size ratio proportional to
distance

�i�1
n (dbhj/dbhi) � �1/(distij � 1)	 Hegyi (1974) cited in Biging and

Dobbertin (1995)

CID14r Size difference proportional to
distance

�i�1
n �(dbhj � dbhi)/(distij � 1)	 Moravie et al. (1999) cited

in Paulo et al. (2002)

CID15r Negative exponential size ratio �i�1
n (dbhj/dbhi) � �1/exp(distij � 1)	

CID16r Negative exponential weighted
size ratio

�i�1
n (dbhj/dbhi) � exp�(�distij � 1)/

(dbhi � dbhj)	
Martin and Ek (1984)

CID17r Lorimer �i�1
n � �(dbhj/dbhi)/(�distij/r)	 Lorimer (1983) cited in

Mailly et al. (2003)

CID18r Crowding �i�1
n (dbhj/distij)

�; with � � 1 Miina and Pukkala (2000);
Stadt et al. (2007)

The index i refers to the subject tree, j refers to a competitor, distij � distance between i and j, BA � plot basal area, Dmc � 2 � (�BA/Nn � �), n �
number of trees in plot k, dbhi � dbh of tree i, BAi � basal area of tree i, and r � search radius.
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Similarly, log transformation has been widely used (e.g.,
Wykoff 1990, Andreassen and Tomter 2003, Trasobares et
al. 2004) because it results in a negative exponential shape
close to biological growth. However, transformation alters
the error structure, resulting in biases that must be corrected
(Myers 1990). In the study, we used the correction proposed
by Snowdon (1991) to correct residuals from log-trans-
formed models.

After log transformation, researchers generally obtain a
linear model with normal errors (i.e., the data are lognor-
mal), and this has been the classic approach to diameter
empiric growth models. Classic general linear models with
a normal distribution are extended into GLMs that, using
maximum likelihood theory, are able to fit linear models to
any probability distribution included in the exponential fam-
ily (McCullagh and Nelder 1989). Therefore, data fitted by
GLMs belong to fY(y; �, �) � exp{(y� � b(�))/a(�) � c(y,
�)} where � and � are the canonical and dispersion param-
eters, respectively. GLMs include probability distributions
such as the normal (where variance � � � �2) or the
gamma functions (where variance � �2 � �) (McCullagh
and Nelder 1989). GLMs directly fit the expected mean of
the dependent variable, hence avoiding biases included in
transformed general models (McCullagh and Nelder 1989).
They have the generic expression E(Yi) � �i � g�1(�i),
with Yi being the random component or dependent variable
(belonging to the exponential family), g(�) being the link
function, and �i being the linear predictor (McCullagh and
Nelder 1989). General linear models are a particular type of
GLM with identity link and Gaussian distribution, whereas
a log-transformed model is the same as a lognormal GLM
with an identity link. The gamma function can be used to fit
variables with constant coefficient of variation and is usu-
ally used either with identity, log, or reciprocal links (Hale-
koh and Højsgaard 2007).

GLMs and general linear models share the same assump-
tions of independence among observations. In general linear

models, correlations within the data can be modeled to
obtain more robust and accurate estimates by using linear
mixed models. These models include both fixed and random
effects and can model correlation in the residual variance-
covariance structure (Verbeke and Mohlenbergs 2000). An
extension of linear Gaussian mixed models are generalized
linear mixed models (GLMMs), similar to normal mixed
models in structure, in which G (random effects covariate
structure) and R (residual covariate structure) can be mod-
eled and with expression (Diggle et al. 2002, Mohlenberghs
and Verbeke 2005):

fi
 yij�bi, �, 	� 
 exp�	�1�yij�ij � 	
�ij�	 � c
yij, 	�, (1)

�ij 
 E
Yij�bi� 
 g�1
x�ij � � z�ijbi�, (2)

where g(�) is the link function, xij and zij are matrixes of
known covariates, � is a p-dimensional vector of fixed
effects, and bi is a q-dimensional vector of random effects,
bi � N(0, G). Yij are observations from any distribution of
the exponential family, with covariance matrix V, where 	
is the scale parameter and � is the natural parameter (Diggle
et al. 2002, Molenberghs and Verbeke 2005).

In this study we compared linear log-transformed general
models with GLMs with normal and gamma probability
density functions (PDFs) and their ability to select signifi-
cant covariates in parsimonious models. Covariates were
selected by comparing nested models fitted using maximum
likelihood methods by log-likelihood ratio tests compared
with a 2 distribution (Verbeke and Mohlenberghs 2000),
whereas significance of covariates in GLMs was tested
using analyses of residual deviance (McCullagh and Nelder
1989). The covariates having the lowest asymptotic t values
where tested first in the next nested fit. Random effects were
accepted when the SE was at least two times smaller than the
estimated mean. To check for multicollinearity in linear nor-
mal models we calculated the variance inflation factor (Myers
1990) using PROC REG. The other analyses were performed

Figure 3. Flow chart of the steps followed in the study for model fitting
and validation: for both age-dependent and -independent models only
for sampled data.
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using PROC MIXED for linear mixed models, PROC GEN-
MOD for GLMs, and PROC GLIMMIX for GLMMs, all in
SAS 9.1 (SAS Institute, Inc. 2004). We did not have an
independent data set, and the sample size was too small to be
split so we carried out an autovalidation (jackknife), leaving
out one plot each time and calculating the goodness-of-fit
statistics to the residuals obtained (Myers 1990).

To compare behavior between models we calculated the
following goodness of fit statistics:

—Mean residual bias (bias)

Bias 

�i�1

n

esti � obsi�

n
(3)

—Root mean square error (RMSE)

RMSE 
 ��i�1
n


esti � obsi�
2

n � p
, (4)

—Adjusted coefficient of determination (Mittlböck and
Heinzl 2002) for general normal linear models,

Rss
2 
 1 �


n � k � 1��1 � �i�1
n


 yi � �̂i�
2


n � 1��1 � �i�1
n


 yi � �̄�2 (5)

and for GLMs (both Gaussian and Gamma),

RD
2 
 1 �


n � k � 1��1 � D
 y; �̂�


n � 1��1 � D
 y; �̄�
, (6)

with n representing sample size and k representing the
number of fitted parameters. The R2 calculated in the au-
tovalidation is called efficiency (EF), and it is the same as
RSS

2 without the correction for the degrees of freedom (in all

models EF � 1 � [�i�1
n (yi � �̂i)

2/(�i�1
n (yi � �� i)

2]). All R2

and EF values are calculated for residuals obtained using
only the mean response (i.e., the fixed effects, if any random
effects exist in the model). To check for systematic depar-
tures in GLMs, McCullagh and Nelder (1989) recommend
plotting standardized deviance residuals against predicted
values and covariates. We decided to plot raw residuals
(observed � predicted) to ease the interpretation and com-
parison with general models.

Results

At the landscape scale dehesas are a mosaic of different
plant assemblages; in contrast, at the plot scale trees tended
to be displaced following an uniform pattern (1.400 �
0.214) (Clark and Evans 1954). Plot summary statistics are
shown in Table 1, and the distributions of age and dbh can
be seen in Figure 2. These distributions are skewed and
non-normal, with samples from Salamanca being younger
with a smaller mean dbh.

Competition in Age-Dependent Diameter
Increment Models

In Table 3 we show the selected covariates using log-
likelihood ratio tests for the log-transformed mixed model
(Verbeke and Mohlenbergs 2000). In Table 4 we compare
the log-transformed models and the GLMs with log links
including extra covariates as selected from Table 3 to ease
the comparison between models. Five covariates were se-
lected in the age-dependent log-transformed model (exclud-
ing those that were collinear with the previously selected
covariates [not shown]); age was the covariate explaining
the most variance, followed by density (CII1) and ddg

Table 3. Selection of covariates in linear mixed model

Variables added �2LL p(2) EF (%) Max VIF (x)

Age-dependent models �log(Incdbh10) � f(xc)	
1 Age 160.2 �0.0001 (55.5)** 33.19 1.000
2 Density (CII1) 151.1 0.0026 (9.10)** 44.69 1.037
3 ddg (CII3) 134.6 �0.0001 (16.5)** 50.01 1.608 (age)
4 (1/dbh) 126.6 0.0050 (8.0)** 51.81 2.607 (1/dbh)
5 CID1550 119.1 0.0062 (7.5)** 53.09 2.608 (1/dbh)

Age-independent models (own data) �log(Incdbh10 � 1) � f(xc)	
1 (1/dbh) 79.1 �0.0001 (24.0)** 13.47 1.000
2 Density (CII1) 68.1 0.0009 (11.0)** 21.57 1.04
3 DumCac 57.9 0.0014 (10.2)** 26.98 1.83 (DumCac)
4 CID1550 50.9 0.0081 (7.0)** 29.88 1.85 (DumCac)
5 CII750 45.9 0.0253 (5.0)** 30.98 2.00 (CII7)
6 dbh 41.7 0.0404 (4.20)** 33.42 3.69 (dbh)

Age-independent models (IFN) �log(Incdbh10 � 1) � f(xc)	
1 Y UTM (km) 2,643.2 �0.0001 (29.7)** 1.407 1.00
2 Slope 2,611.9 �0.0001 (31.3)** 3.170 1.04
3 Density 2,606.7 0.0226 (5.2)** 3.649 1.07 (slope)
4 dbh 2,600.6 0.0135 (6.1)** 3.763 1.23 (density)
5 Height 2,589.0 0.0066 (11.7)** 4.306 1.72 (dbh)
6 Tmin 2,583.8 0.0226 (5.2)** 4.685 3.89 (Tmin)
7 DumGuad 2,577.6 0.0128 (6.20)** 4.906 4.04 (Tmin)

Models were fitted using maximum likelihood estimation (Verbeke and Mohlenberghs 2000). �2LL, �2 times residual log-likelihood; p(2),
log-likelihood ratio test, probability associated to the 2 distribution; EF, efficiency calculated for the residuals without back-transforming; Max VIF,
maximum variance inflation factor corresponding to covariate x; DumCac, dummy variable for Cáceres data; Tmin, mean of minimum temperatures of the
coldest month; DumGaud, dummy variable for the Guadiana and Guadalquivir river basins. Basic model: (Incdbh10ij) � f(x) � bi � �ij; for plot i, tree j,
linear relationship of fixed effects f(x), and random intercept plot effect bi.
** Significant at � � 0.05.
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(CII3). The previous three covariates were negatively cor-
related with growth, reflecting the existence of competition.
The log-transformed mixed model explained �50% of the
variance of the back-transformed dependent variable (Table
4). Among GLMs, the log-likelihood maximized in gamma
models both with the reciprocal link (�203.8: the maxi-
mum; hence, the link used in the final model shown in Table
5) and the log link (�204.0) compared with the Gaussian
model with a log link (�236.5). Gamma models were better
than log-transformed models (equivalent to a lognormal
GLM) and Gaussian GLMs with log link (identical to a
nonlinear exponential model), particularly in terms of the
validation statistics and, as mentioned, they maximized the
likelihood.

In Table 5 we show the estimates of the gamma model
with inverse (�reciprocal) link and log-transformed. The
gamma model reduced the significant covariates to density
and age, which were the covariates with the strongest cor-
relation (negative) from the beginning, both in the statistics
and graphic analysis (not shown). It can be seen how using
the Gaussian PDF overinflates the coefficient of determina-
tion from the excessive number of covariates selected. The
final age-dependent model is a gamma GLM including an
intercept, age at 1.30 m, and density, with no random
coefficients (the random coefficient in the GLMM was
nonsignificant) (Table 5), and it had the expression

Inc10i 
 �̂i 

1

�0.05331 � 0.003097 � Agedbh

� 0.000979 � Density � � �i, (7)

with �i � G(�, �2/8.6828). Because age was closely related
to dbh and estimating age in holm oak is extremely difficult,
it would be very useful to estimate ages from dbh (Plien-
inger et al. 2003). The relationship obtained was

Ageij 
 21.0457�32578	

� 
2.3742�01518	 � bi� � dbhij � �ij, (8)

with �i � G(�, �2�0.02820[0.003433]), bi � N(0,
0.3347[0.09466]), MBias � �0.120, RMSE � 23.41, and
RSS

2 � 47.24 (SEs of parameters are shown in brackets).

Distribution of residuals against predicted values and co-
variates are shown in Figures 4 and 5.

Competition in Age-Independent Diameter
Increment Models

Six covariates were first selected in the log-transformed
model (Table 3), among which density, the inverse of dbh,
and a dummy variable for the Cáceres data were most
strongly related to diameter increment. However, we used
only five covariates to compare models in Table 4, exclud-
ing (1/dbh), because although this covariate was signifi-
cantly selected in the estimation phase, the autovalidation
statistics were better in all models without its inclusion (not
shown), and models depicted more realistic fits. All age-in-
dependent GLMs in Table 4 were also fitted using the
log-link for comparative purposes. Both untransformed
GLMs were better than the log-transformed classic model.
Although the Gaussian GLM had the best goodness-of-fit
statistics (Table 4), it can be seen in Table 5 that the gamma
model was the best as it reduced the number of selected
covariates significantly. Thus, it resulted in more parsimo-
nious models depicting the real relationship between covari-
ates and the dependent variable, despite increasing the
RMSE slightly. The log-likelihood was maximized in
gamma models both with a reciprocal link (�238.9) and
with a log link (�241.8), compared with the Gaussian
model with a log link (�264.1) and a reciprocal link
(�256.7). As the reciprocal maximized the likelihood with
both PDFs, we used the reciprocal link to fit final normal
and gamma age-independent GLMs (Table 5). The variables
finally selected in the gamma model with an inverse link were
again density and dbh (in lieu of age) and a dummy for the
Cáceres province. These three variables were negatively cor-
related with diameter increment (i.e., positive estimates using a
reciprocal link). The final expression was

Inc10i � �̂i �
1

�0.1070 � DumCac
� 0.005572 � dbh � 0.001858 � Density�

� �i, (9)

Table 4. Model comparisons

Model

Estimation Validation (jackknife)

�2LL
Mean bias

(cm)
RMSE
(cm) R2

SS R2
D

Mean bias
(cm)

RMSE
(cm)

EF
(%)

Age-dependent models
Log-transformed Gaussian LM

(�lognormal GLM)
— 0.0244 1.0303 50.599 — 0.0145 1.0964 45.737

Gaussian GLM with a log link �236.5 0.0083 1.0176 51.787 51.787 �0.0105 1.1422 41.112
Gamma GLM with log link (1/�) �204.0 0.0042 1.0261 50.977 53.929 �0.0035 1.0899 46.378

Age-independent models
Log-transformed Gaussian LM

(�lognormal GLM)
— �0.0001 1.2084 30.807 — �0.0153 1.3021 22.059

Gaussian GLM with a log link �264.1 0.0216 1.1690 35.249 35.249 0.0252 1.2344 29.952
Gamma GLM with a log link (1/�) �241.8 0.0093 1.1965 32.163 28.718 �0.0049 1.2808 24.598

The fitting statistics for the log-transformed linear model (LM) are calculated using the corrected predictions: predcorr � ŷ CF (Snowdon 1991); �2LL,
�2 times residual log-likelihood. All models include only fixed effects (see text for nonsignificant tests for random effects). All age-dependent models
include the five covariates selected in Table 3 for the log-transformed linear model, whereas age-independent models include the six covariates selected
in Table 3 except 1/dbh (see text for details).
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Figure 4. Variance function of residuals and residuals against predicted values: A, age-dependent models; B,
age-independent models. Thick lines with dark circles correspond to variance function or mean residual and
dashed line to sample size.

Figure 5. Plots of residuals against selected covariates in the final models: A, age-dependent models; B,
age-independent models. Dark lines correspond to mean residuals and dashed lines to standard error of the mean.
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where �i � G(�, �2/6.3170). A random intercept effect was
not significant (Table 5). Distribution of residuals against
predicted values and covariates is shown in Figures 4 and 5.

Applicability of the IFN to Model Holm Oak
Diameter Growth

For IFN data we fitted a log-transformed model (Table 3)
as data and residuals were less skewed than in the sampled
set and to ease comparison with other published studies.
Density was also selected in this model; however, the co-
variates that explained the most variance were slope and the
Y UTM (Table 3). The final model included six covariates,
and its expression was

Inc10 
 CF � 
exp(�4.0376 � 0.001175 � Y UTM

� 0.00448 � Slope � 0.00038 � Density

� 0.00234 � dbh � 0.02329 � Height

� 0.02842 � Tmin

� 0.08161 � DumGuad � bi�i) � 1) (10)

with �i � N(0, 0.1032[0.004409]) and bi � N(0,
0.05348[0.004484]). CF is the correction factor (1.11614
with our data [Snowdon 1991]), Y UTM is expressed in km,
slope is in %, density is in trees/ha, dbh is in cm, and height
is in m. Tmin is the mean of minimum temperatures in the
coldest month, and DumGuad is a dummy variable for the
Guadiana and Guadalquivir river basins, which are the
southernmost basins in the study area (Figure 1), with MBias

� 0.000, RMSE � 1.548, and R2 � 3.931. Results were
similar if only plots with a density of �250 trees/ha were
analyzed: 2,667 observations, MBias � 0.000, RMSE �
1.551, and R2 � 4.130. Finally, if only plots with density of
�150 trees/ha were used, the model fit was worse (2,429
obs., MBias � 0.000, RMSE � 1.559, and R2 � 3.369).

Discussion
Holm Oak Intraspecific Competition

Our results show that competition does exist, but age is
clearly the most influential covariate, probably because the
trees are not competing for light (at least in the lowest
densities), as they are in closed forests. As found in many
other studies (e.g., Martin and Ek 1984, Biging and Dob-
bertin 1995, Wimberly and Bare 1996) distance-dependent
indices did not outperform distance-independent indices
(which are considered to reflect symmetric competition) and
thus we do not expand more on the discussion of this issue
here. Plot density is the best competition index, which might
be expected from the uniformity of the stands (Biging and
Dobbertin 1992). In semiarid woodlands, competition for
water is likely to be more important than competition for
light. Competition for below-ground resources can occur
over greater distances than competition for light (Schwin-
ning and Weiner 1998); hence, holm oak trees could be
prospecting large areas (both in depth and topsoil) outside
of their own crown projection (Canadell et al. 1996, Jackson
et al. 1996, Moreno et al. 2005).

Holm Oak Diameter Increment Models and
Growth Prediction

The first conclusion that can be extracted from the model
comparison is that untransformed GLMs, both with the
normal and gamma PDFs, fitted the data better than the
classic transformed models (Table 4). Mixed models and
GLMs rely on maximum likelihood estimation, and it can be
seen how models with inverse link function and PDFs that
maximize the likelihood resulted in the most parsimonious
models. Models fitted with the Gaussian PDF selected too
many covariates, overinflating the coefficient of determina-
tion. Age and density were negatively correlated with
growth in age-dependent models. Gamma models were the
best, and they are of interest for two main reasons: we are
directly modeling the raw dependent variable because this
avoids biases from transformation and makes the models
easier to use for managers and researchers and we are using
a flexible PDF that is able to model departures from nor-
mality, particularly increasing variance with increasing
scores of the dependent variable (Figure 4), and thus
weighted regression is not required.

Age-independent models also show how selecting the
appropriate PDF results in more parsimonious models with
a lower number of significant covariates, enabling a clearer
discussion of the relationship between covariates and the
dependent variable. In normal models RD

2 � RSS
2 is calcu-

lated identically (McCullagh and Nelder 1989, p. 34),
whereas in gamma models the deviance is calculated as
2�[�log(y/�̂) � (y � �̂)�̂], which makes direct compari-
son of this statistic less straightforward. However, the de-
crease in RD

2 compared with RSS
2 in gamma models was

unexpected (Mittlböck and Heinzl 2002). As the analysis of
deviance is more restrictive in gamma models than in
Gaussian models, because of the way the deviance is cal-
culated and from the best fit of the dependent data, we
decided to accept covariates at � � 0.10 (Table 5). Again,
density was negatively correlated with growth, and dbh was
also significant. The dummy for Cáceres is added to dbh as
an estimate of older age in that location (Table 1; Figure 2),
as it is deduced from its only inclusion in the age-indepen-
dent model. The same could be thought of dbh: as it is only
included in age-independent models, it seems that it is, in
fact, being selected mostly as an indirect estimate of age in
the system. The IFN data and our observations when mea-
suring the whole life growth of both samples (unpublished
observations) points toward less growth in the southern-
most holm oaks from Cáceres compared with those in
Salamanca, but sample age may be a confounding variable.

In some studies the square dbh enters in the final models
(e.g., Wykoff 1990, Larocque 2002) to fit the biological
point of inflection expected in growth. In our model it was
not selected, probably because the inflection point is
reached at a very young age (smaller than 10 cm dbh)
(Gea-Izquierdo et al. 2008) or because it was not included
sufficiently in the sampled plots (Table 1) or in the ecosys-
tem in general (Pulido et al. 2001). Age-independent models
explained less of the variation in the dependent variable
(�29%), but efficiencies were similar to those of other
studies (e.g., Lessard et al. 2001, Sánchez-González et al.
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2006, Stadt et al. 2007). The inclusion of age reduced the
model error and almost doubled efficiency (R2 � 48.7)
(Table 5). This result reflects the high correlation between
growth and age that was especially noticeable in the lowest
density stands, as a consequence of reduced or nil compe-
tition. We did not find such a close relationship between dbh
and age as that in Plieninger et al. (2003), but it is still good
enough to give an estimate, bearing in mind the general
difficulty of estimating ages from dbh (Cook and Kairiuk-
stis 1990). The dbh-age relationship has possibly occurred
because aerial competition is reduced to the minimum,
particularly in low-density stands. This relationship is likely
to vary in other holm oak formations, especially if they are
not as homogeneous as our stands.

In the sampled plots we only characterized holm oak
shrubs, although some plots included high densities of Cyti-
sus multiflorus (L’Hér.) and Cistus spp. This could be, along
with the different parent materials, another reason for dif-
ferences between plots that were not included in the models.
In addition, we did not sample the holm oak shrubland,
which results from logging or coppicing, as seen in Cáceres
(unpublished observations). Some of this unexplained vari-
ability was expected to have been explained by random
effects. However, no random parameters were significant in
the final models (neither in log-transformed models nor in
GLMs); therefore, with the model proposed it is not possible
to perform climatic, spatial, or plotwise random effects
calibrations to improve prediction accuracy (Lappi 1991,
Miina 1993, 2000). Other diameter increment models usu-
ally include random components (Miina 1993, Miina and
Pukkala 2000, Calama and Montero 2005); the reasons that
random plot parameters were not included in our models
could be related to the open stands and management of the
areas studied. Larger data sets might provide more insights
into improving model accuracy.

Finally, when growth models are fitted, the question
arises as to whether estimations based on past growth are
applicable to future growth, especially under the current
conditions of climate change. It has been shown that tree
growth responds to climate change, and this is expected to
be more patent in tree species growing at the limit of their
distribution areas or under climates where limiting factors
mean that the vegetation type is on the border between
treelike formations and, for instance, steppe or shrubland.
This is the case for the continental Mediterranean climate
ecosystems of our study area. Problems could arise if
changes in aridity, for instance, changed this tendency,
especially in stands such as those in Mediterranean ecosys-
tems where timber is not the principal product and where
close stands are likely to be crucial for regeneration and
forest preservation (Pulido et al. 2001). These issues should
be addressed in future studies, particularly with this species
and ecosystem, for which preservation of the ecosystem
integrity (e.g., topsoil, humidity levels) with treelike forma-
tions should be the principal goal. Climate-growth interac-
tions in climate change scenarios and their inclusion in
diameter increment models are a must for the future. The
effect of competition on growth could be also modified if
climate changes (Cescatti and Piutti 1998, Yeh and Wensel
2000).

Use of the IFN to Model Holm Oak Diameter
Growth

The IFN data do not seem to be appropriate for modeling
individual tree diameter growth in Quercus ilex. We found
very poor correlations between covariates and growth (R2 �
4%), even when compared with other forest inventory stud-
ies in which R2 does not tend to be very high, but in all cases
greater than our results (usually �20%; e.g., Lessard et al.
2001, Andreassen and Tomter 2003, Trasobares et al. 2004,
Canham et al. 2006). This can be explained by (1) the
heterogeneity of holm oak stands, including coppice and
seedlings, shrubs, and treelike oaks; (2) the stem profile,
which makes it difficult to clearly define the dbh at 1.30
and, hence, remeasure it at the same point in different
samples; (3) management of the stands, including pruning
and clearing; and (4) assumption of a constant error in IFN
sampling, independent of the target species, which should
not be assumed, as the slower the growth of the species, the
greater the expected relative error.

The IFN models presented are log-transformed linear
mixed models. Moisen and Frescino (2002) observed that
linear models fit Inventory data as well as other more
complex techniques. Many covariates were selected, but as
seen in Table 3, latitude (calculated as the Y UTM) and
slope were the regressors that explained most of the varia-
tion and are the only correlations we would consider as
hypotheses for further investigations. It is impossible to
conclude whether this trend is real because the model ex-
plains too little variance. However, the relationship with
latitude and slope seems logical from a climatic and edaphic
point of view. In general, the southern most plots would be
expected to experience more water stress, especially con-
sidering the changes in patterns of precipitation and in-
creases in temperature that have occurred during the last
decades (e.g., Esteban-Parra et al. 1998; Intergovernmental
Panel on Climate Change 2007). The stem diameter incre-
ment in holm oak coppices has been shown to be strongly
correlated with water availability (e.g., Mayor and Rodá
1994, Ogaya and Peñuelas 2007). In addition, higher slopes
have shallower, poorer soils that retain less water (Puerto
and Rico 1992). Density was also selected in IFN models,
confirming the fact that density affects growth in these open
woodlands. Although tree height is not a reliable covariate
in this ecosystem, it was included in the models. We al-
lowed the inclusion of tree height to show the best possible
fit, but assumed that this equation will not be used for
predictive purposes, but only to support what we have
discussed about data modeling.

Conclusions

Although often considered as free grown, we have shown
that competition limits holm oak growth to some extent in
Iberian open woodlands. Thus, free growth might also be
exhibited only in the lowest densities. Age-dependent mod-
els explained approximately 50% of diameter increment
variation, whereas the most parsimonious age-independent
models explained approximately 30%. Age was the covari-
ate most correlated with growth, which reflects the reduced
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competition for light with increased age. This finding was
also supported by the substitution of age by dbh (if we
accept that it is closely related to age in the absence of
competition) in age-independent models. The analyses of
different competition indices showed that density (a simple
distance-independent index) outperformed more complex
distance-dependent indices perhaps because below-ground
competition is limiting holm oak growth in these uniform
stands, although competition appears to be reduced com-
pared with that in closed forests. Aerial competition is
generally minimal as crowns are either isolated or form a
unique dominant-codominant layer; however, below-
ground competition reduced tree growth.

Finally, modeling diameter growth directly with gener-
alized linear models and with the gamma distribution to fit
the natural growth trend of increasing variance with increas-
ing growth resulted in more parsimonious models that ex-
plained holm oak diameter increment more clearly. These
results suggest that data transformations in future empirical
models should be avoided, particularly when data depart
much from normality and that data should be modeled
directly with the most appropriate PDF. This modeling
approach is likely to have great potential for forestry
applications.
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MAYOR, X., AND F. RODÁ. 1994. Effects of irrigation and fertili-
zation on stem diameter growth in a Mediterranean helm oak
forest. For. Ecol. Manag. 68:119–126.

MCCULLAGH, P., AND J.A. NELDER. 1989. Generalized linear
models. Chapman & Hall, London, UK.

MIINA, J. 1993. Residual variation in diameter growth in a stand of
Scots pine and Norway spruce. For. Ecol. Manag. 58:111–128.

MIINA, J. 2000. Dependence of tree-ring, earlywood and latewood
indices of Scots pine and Norway spruce on climatic factors in
eastern Finland. Ecol. Model. 132:259–273.

Forest Science 55(4) 2009 321



MIINA, J., AND T. PUKKALA. 2000. Using numerical optimization
for specifying individual-tree competition models. For. Sci.
46:277–283.
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TOMÉ, M., AND H.E. BURKHART. 1989. Distance-dependent com-
petition measures for predicting growth of individual trees.
For. Sci. 35:816–831.
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