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Forest fires are a major hazard in Mediterranean countries, with an average of 45,000 fires per year. Discrim-
ination of different degrees of burn severity is critical to improve management of fire-affected areas. In this
work, an unmixing-based methodology was evaluated in three Mediterranean study areas to estimate burn
severity from medium spatial resolution optical satellite data. Post-fire Landsat 5 Thematic Mapper (TM)
images were unmixed into four fraction images: non-photosynthetic vegetation and ash (NPV–Ash), green
vegetation (GV), soil and shade using Multiple Endmember Spectral Mixture Analysis (MESMA). MESMA
decomposes each pixel using different combinations of potential endmembers, overcoming the Linear Spectral
Mixture Analysis limitation of using the same number of endmembers tomodel all image pixels. Next, a decision
tree was used to classify the shade normalized fraction images into four classes: unburned and low, moderate,
and high levels of burn severity. Finally, the burn severity estimates were validated using error matrix, producer
and user accuracies per class, and κ statistic. For reference data, we used 50 plots per class defined from a 50 cm
post-fire orthophotography (proportion of dead tree b 50%, low severity; proportion of dead tree between 50
and 90%, moderate severity; and proportion of dead tree > 90%, high severity). MESMA-based burn severity
estimates showed a high accuracy (0.80, 0.80, and 0.78) for the three test sites. We conclude that the proposed
MESMA based methodology is valid to accurately map burn severity in Mediterranean countries frommoderate
resolution satellite data.

© 2013 Elsevier Inc. All rights reserved.
1. Introduction

Worldwide fires affect millions of hectares annually from tropical
to boreal regions, removing partially or completely the vegetation
layer and affecting the post-fire vegetation composition (Calvo et al.,
2008; Epting & Verbyla, 2005; Riaño et al., 2007). In Mediterranean
countries, fires are considered a major cause of land degradation
with about 0.5 million hectares affected each year by around 45,000
forest fires (Schmuck et al., 2010). Discrimination of different degrees
of burn severity is critical to improve management of fire-affected
areas, either to help natural regrowth, reduce soil erosion and degra-
dation, or improve landscape diversity (Key, 2005; Lentile et al.,
2006). According to Key and Benson (2006), in a broad sense, the
consequences of fire in a particular area are governed by short- and
long-term processes, so overall severity is an amalgamation of factors.
Short-term severity reflects changes to pre-fire community compo-
nents extending until approximately one year following the fire.
Long-term severity reflects unique site conditions that prevail up to
34 983423490.
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ten years into the future in addition to short-term severity. Although
the terms fire and burn severity are often used interchangeably
(Veraverbeke et al., 2010b), the distinction between them has become
the subject of some discussion (Keeley, 2009). Several papers (Bodi
et al., 2011; De Santis & Chuvieco, 2007, 2009; De Santis et al., 2009,
2010; Robichaud, 2005) have clarified the use of fire severity to refer
to fire behavior conditions, and burn severity to what is left after
fire, including short and long-term effects, as proposed by Jain et al.
(2004). Following this definition, we established three levels of vege-
tation burn severity by observing the percentage of green vegetation.
As suggested by Hudak et al. (2004), burned sites with predominantly
green crowns were classified as low, with predominantly brown
crowns as medium, and with predominantly black crowns as high.

Remotely sensed data constitute the method of choice when esti-
mates of fire/burn severity are needed over large areas because of the
prohibitive costs and the time needed to conduct fieldwork. The poten-
tial of satellite imagery as an alternative for extensive field sampling to
quantify both fire and burn severity over large areas has been shown in
a large number of studies (e.g. French et al., 2008; Miller & Yool, 2002;
Verbyla & Lord, 2008). Many of these studies have used spectral indices
for assessing burn severity (e.g. Hudak et al., 2007; Miller & Thode,
2007; Veraverbeke et al., 2011) or for burned area mapping (Quintano
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& Cuesta, 2010; Quintano et al., 2011; Smith et al., 2007b). Normalized
Burn Ratio (NBR) and more specifically the differenced Normalized
Burn Ratio (dNBR), has become accepted as the standard spectral
index to estimate burn severity (e.g. Chen et al., 2011; Epting et al.,
2005; French et al., 2008; Key & Benson, 2006; López-García &
Caselles, 1991; Soverel et al., 2010; van Wagtendonk et al., 2004;
Veraverbeke et al., 2010a). However, as several authors have stated
(e.g. De Santis & Chuvieco, 2007; De Santis et al., 2009; Lentille et al.,
2009; Roy et al., 2006), methods based on dNBR and other similar spec-
tral indices have limitations: spectral bands used to calculate NBR are
not optimal to evaluate the degree of burning, dNBR cannot be optimal
for characterizing both burned area and post-fire effects related to
severity, among others (see Lentille et al., 2009 for examining the limi-
tations in detail). Other approaches to retrieve burn severity from satel-
lite imagery have been proposed. Some of them are based on radiative
transfer models, which provide a more physical basis to estimate this
variable (Chuvieco et al., 2007; De Santis & Chuvieco, 2007, 2009; De
Santis et al., 2009, 2010). Recent research has highlighted subpixel-
based methods as one such alternative (Hudak et al., 2007; Lentile
et al., 2006, 2009; Smith et al., 2007a).

The short-termpost-fire environment typically consists of amixture
of vegetation and substrate and ash. Thus, monitoring post-fire effects
essentially poses a sub-pixel problem at the resolution of most opera-
tional satellite systems such as Landsat. Different image analysis tech-
niques to solve the mixing problem exist (e.g. Atkinson et al., 1997;
Kokaly et al., 2007) but linear spectral mixture analysis (LSMA) is the
most widely technique used (e.g. Riaño et al., 2002; Vila & Barbosa,
2010). LSMA assumes that the reflectance of eachmixed pixel is a linear
combination of spectra of distinct components or endmemberswith the
weights representing the abundances of endmembers resident in a
mixed pixel (Roberts et al., 1993; Shimabukuro & Smith, 1991). The
aim of LSMA is to decompose a mixed pixel into a set of endmember
spectra and estimate the proportion of endmembers present in that
pixel (fraction images). Fractional abundance can be estimated using a
variety of approaches, including least squares (Shimabukuro & Smith,
1991), modified Gramm–Schmidt orthogonal decomposition (Adams
et al., 1993) or singular value decomposition (Boardman et al., 1995)
as three common approaches. Model fit is often assessed based on the
root mean square error (RMSE) error metric.

LSMA, predominately used to map burned area, can surpass the
results obtained with more traditional techniques like vegetation
indices (Hudak et al., 2007; Quintano et al., 2006; Smith et al., 2007a;
Vila & Barbosa, 2010). Furthermore, as Lentile et al. (2006, 2009) pointed
out, it also enables estimation of fractional cover components with each
multispectral image pixel, including unburned vegetation, soils and
charred of fully combusted vegetation, that are directly analogous to
traditional ‘field severity’ assessment of % green, % brown and % black.

Accuracy of LSMA results, however, mainly depends on the
endmembers selected. The number of endmembers must account for
the number of classes in the pixel, and their spectral separability should
be sufficient in order to avoid confusion (Theseira et al., 2002). LSMA
is restricted to models in which only one spectrum was allowed for
each endmember. For that reason, this model does not incorporate the
natural variability in scene conditions (the same material could have
different spectral responses). Multiple Endmember SMA (MESMA),
presented by Roberts et al. (1998), is widely used to account for within
class spectral variability. In this model, allowing multiple endmembers
for each endmember class includes natural variability. In addition,
because MESMA decomposes each pixel using different combinations
of potential endmembers it overcomes the LSMA limitation of using
the same number of endmembers to model all pixels, regardless of
whether the ground components represented by the endmembers are
present in the pixel. MESMA has been applied in a wide range of fields:
plant species mapping (Dennison & Roberts, 2003; Roberts et al., 1998;
Youngentob et al., 2011), landform mapping (Ballantine et al., 2005),
fire temperature mapping (Dennison et al., 2006; Eckmann et al.,
2009), and urban remote sensing (Franke et al., 2009; Powell et al.,
2007), among others.

Our study explores the potential of usingMESMA fraction images to
map burn severity levels in Mediterranean countries — an approach
that has not been explored in remote sensing of burn severity. A few
burn severity studies have been carried out in the Mediterranean
Basin (e.g. De Santis & Chuvieco, 2007; De Santis et al., 2009;
Díaz-Delgado et al., 2003; Fernández-Manso et al., 2009; Veraverbeke
et al., 2010a); but none of them, to our knowledge, used MESMA-
based fraction images to estimate the burn severity levels. Thus, this
study is the first use of MESMA in Mediterranean countries to map
burn severity levels. We use Landsat 5 Thematic Mapper (TM) data,
which is the standard choice when working at moderate resolutions.
Post-fire orthophotographs were used as reference to measure the
accuracy of MESMA-based estimates (specifically, we computed for
error matrix and κ statistic). Additional measures of accuracy included
producer and user accuracies and overall accuracy.

2. Materials

2.1. Study area

Three study areas were included in this study: Guadalajara, Ávila,
and Tenerife provinces, all of them located in Spain (Fig. 1, Table 1).

Our first study area is located in East Central Spain (province of
Guadalajara). The topography is rugged with elevation ranging be-
tween 1100 m and 1400 m. Rainfall averages 600–800 mm per year,
with maximum precipitation recorded in November–December and
minimum precipitation taking place during the summer months. Pinus
pinaster Ait. is the dominant vegetation, mixed with oak forest of
Quercus faginea Lam. and Quercus pyrenaica Willd. The fire in this area
burned about 130 km2. The fire lasted 4 days, ending on 16 July 2005.
It was caused by human carelessness and helped by very dry weather
conditions including a maximum air temperature of 35 °C, relative
humidity of 22%, 30 days since the last rainfall event and wind speeds
between 10 and 23 km/h. Eleven firefighters died while suppressing
the fire, which had a major impact in the national media (De Santis &
Chuvieco, 2007; Spanish Environmental Ministry, 2005).

The second study area is located in Central Spain (province of
Ávila), at the base of Central Sierra de Gredos Mountains. This region
has irregular topography with elevation ranging from around 500 m
in the Tiétar River valley to 2300 m at some of the highest peaks.
Average summer temperature in this region is 33 °C whereas average
winter temperature drops to 1 °C. The average precipitation in this
area is 1200 mm per year, yet during the summer months decreases
to around zero. According to the Spanish Forestry Map, P. pinaster is
the main species, followed by Pinus sylvestris L. and Q. pyrenaica and
Quercus ilex L. The fire we analyzed started on 28 July 2009 and lasted
three days, burning approximately 420 km2 of forested areas. The
exceptionally dry conditions, high temperatures and strong winds
helped its spread.

Finally, the third study area is located in the north of Tenerife
Island (The Canary Islands). The Canary Island pine, Pinus canariensis
Chr. Sm. ex DC., is an endemic species of the Canary Islands and forms
up to 60% of the forest area of the archipelago. The understory can be
dense and is characterized by shrubs or small trees such as Erica arborea
L., and Myrica faya L., all species that are found in the evergreen laurel
forest, situated below 1000 m (Otto et al., 2009). Our study area
includes the Corona Forestal Natural Park, ranging from 300 to 2700 m
elevation (Martín et al., 1995). The area is located over a volcanic surface
where vegetation is sparse, especially in high elevation areas. Teide
Volcano last erupted in 1909. In 2004 there were an alarm for possible
eruption due to the existence of big fumaroles and an increase of
the magma level. This area was burned in 1983 and again on 27 July
2007 (i.e. 24 years later), affecting about 170 km2 of mostly pine
forest (Canary Island pine). The fire in 2007 spread very fast due to



Fig. 1. Study areas location.
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exceptionally high air temperatures (>40 °C), very low relative humid-
ity (b20%) and strong eastern winds from Africa.

2.2. Datasets

In both the Ávila and Tenerife study areas, pre-fire and post-fire
Landsat 5 TM images without clouds were located and downloaded
from the U.S. Geological Survey (USGS) site (http://glovis.usgs.gov/).
All of the images had level L1G processing (systematic correction),
providing systematic radiometric and geometric accuracy, scene rotation
and georeferencing to a Universal Transverse Mercator (UTM) map pro-
jection. In the Guadalajara study area, however, pre-fire and post-fire
Table 1
Summary of the characteristics of the study areas and the dataset.

Study areas Guadalajara

Forest fire Year 2005
Date 16 July–2 Au
Affected area (km2) 128.87
Forested affected area (km2) 103.53

Characteristics Main vegetation Pinus pinaste
Soil-geology Red sandston

Landsat 5 TM images Spatial agency1 PNT
Path/row 200/32
Pre-fire image date 26 June 2005
Post-fire image date 14 Sept. 200

1 PNT: Spanish Remote Sensing National Planning; USGS: U.S. Geological Survey; TM: Th
Landsat 5 TM images were downloaded from the Spanish Remote
Sensing National Planning frame (PNT). These images were also radio-
metrically and geometrically corrected and re-projected to UTM map
projection. Table 1 also summarizes the relevant information about
the Landsat 5 TM images selected to estimate the burn severity level
in each study area.

To validate estimated burn severity levels we used post-fire 50 cm
digital orthophotographs provided by the Spanish National Center of
Geographic Information (CNIG; http://www.cnig.es/) through the
Spanish Aerial Ortho-photography National Planning (PNOA) agency.
Specifically, we used a 2006 false-color orthophotograph in the
Guadalajara study area, and a 2009 false-color orthophotograph in
Ávila Tenerife

2009 2007
g. 28–30 July 27 July–1 Aug.

42.12 171.84
42.12 131.27

r Ait. P. pinaster Ait. Pinus canariensis Chr. Sm. ex DC
e Schists and quartzite Basalt

USGS USGS
202/32 207/40
13 July 2009 16 January 2007

5 30 August 2009 28 August 2007

ematic Mapper.

http://glovis.usgs.gov/
http://www.cnig.es/
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the Ávila study area. Orthophotographs were not available in the
Tenerife study area. For this reason, we used a post-fire Earth Observa-
tion Satellite (Satellite Pour L'observation de la Terre, SPOT) 5 image
acquired on4August 2007 (immediately post-fire) (2.5 mpanchromatic
band) and considered as a help-reference the estimates of severity levels
obtained by the German Aerospatiale Center (Deutsches Zentrum für
Luft- und Raumfahrt, DLR). The official Global Positioning System (GPS)
burned area perimeters provided by the respective Spanish Regional
Governments were used as well.

As ancillary data, we needed a digital elevation model (DEM) and
used the Advanced Spaceborne Thermal Emission and Reflection
Radiometer (ASTER) Global Digital Elevation Model Version 2 (GDEM
V2) provided by USGS. An Airborne Visible/Infrared Imaging Spectrom-
eter (AVIRIS) image of Santa Barbara, California, acquired on 26 August,
Fig. 2. Flowchart of
2009 following theMay 2009 Jesusita fire, was used as a source of plant
canopy, ash and soil spectra. This image was used mainly as a resource
for non-photosynthetic vegetation and ash spectra. Additional spectra
of vegetation canopies were derived from a spectral library based on a
2007 3.5 m spatial resolution image of the U.C. Santa Barbara campus,
including spectra for shrub and herb species and impervious surfaces.
All AVIRIS spectra were extracted from reflectance images atmospheri-
cally corrected using Modtran radiative transfer code and a ground
reference target (see Herold et al., 2004; Roberts et al., 2012).

3. Methods

The method proposed in this study comprises the following steps
(Fig. 2): pre-processing, the MESMA procedure, classification and
methodology.
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accuracy assessment. First, TM pre- and post-fire images were pre-
processed. Pre-processing of the remotely sensed data included
subsetting, topographic normalization and atmospheric correction
(Section 3.1). Second, fraction images were calculated. Prior to apply-
ing MESMA (Roberts et al., 1998), an extension of simple LSMA, we
built a spectral library (Section 3.2.1). Both image and reference
endmembers were included in the library as candidate endmembers.
After selecting the optimal endmembers and building the definitive
spectral library (Section 3.2.2), the fraction images were calculated
(Section 3.2.3). Third, from the fraction images, we obtained an
image of the potentially burned pixels, classified (Section 3.3) into
four classes (Unburned (U), Low (L), Moderate (M), and High severity
(H)) using a binary decision tree (Friedl & Brodley, 1997). Finally, the
accuracy of the estimates was calculated (Section 3.4). We used a
minimum of 50 reference plots per class derived from a 50 cm post-
fire digital orthophotograph (from the DLR severity levels estimation
in the Tenerife study area).

3.1. Pre-processing

After being downloaded, all of the images were co-registered to the
digital orthophotos providedby the CNIG (to theDLR estimate in Tenerife
study area) and to the official GPS burned area perimeters provided by
the respective Spanish Regional Governments. Mis-registration error
between TM images and post-fire false-color orthophotos was below
0.25 of a pixel. The co-registered images of the three study areas were
topographically normalized using the C-correct approach (Teillet
et al., 1982) with the help of the GDEM V2 DEM provided by USGS.
Finally, all of the Landsat 5 TM images were converted to apparent sur-
face reflectance. The original digital numbers of reflective TM bands
were scaled to radiance values (Lλ) using the procedure proposed by
Chander and Markham (2003). The radiance to surface reflectance (ρ)
conversion was performed by using the image-based cosine of the
solar transmittance (COST) method (Chavez, 1996). Path radiance (Lp)
values were computed by using the formulae reported in Song et al.
(2001) which assumes 1% surface reflectance for dark objects (Chavez,
1989, 1996). The optical thickness for Rayleigh scattering (ρr) was
estimated according to the equation given in Kaufman (1989).

In the Tenerife study, due to the presence of some clouds, we
needed to define a ‘cloud mask’ image. We used an adaptation of
the algorithm proposed by Chuvieco and Hantson (2010) that the
National Geographic Institute of the Spanish Government adopted to
process the medium resolution satellite images in the frame of the
Spanish Remote Sensing National Planning. In addition, we defined a
‘sea mask’ to identify all the ‘sea’ pixels in the image.

3.2. MESMA procedure

MESMA extends LSMA by allowing the number and types of
endmembers to vary on a per-pixel basis (Roberts et al., 1998).
MESMA overcomes limitations of LSMA by requiring a model to meet
minimum fit, fraction and residual constraints while testing multiple
models for each image pixel. Using this approach, significantly more
than four materials can be mapped across an image, while minimizing
pixel-scale fraction errors by selecting the best-fit model for each pixel.
Typical endmembers used in MESMA include soil, green vegetation
(GV), non-photosynthetic vegetation (NPV) and shade. The MESMA
procedure presented here consists of three steps: 1) building a spectral
library. Both image and reference endmembers were included in the
library as candidate endmembers; 2) selection of the optimal end-
members to form the definitive spectral library; and 3) decomposing
the mixed pixels to calculate the fraction images.

3.2.1. Building the spectral library
Two alternatives exist to define endmember spectra (Settle &

Campbell, 1998). The first one uses reflectance values extracted from
spectral libraries (reference endmember). Reference endmembers can
be derived from the field, laboratory, images or even radiative transfer
models. The second option utilizes spectra derived from the image
(image endmembers). According to Drake et al. (1999), reference
endmembers have the advantage of being pure and, therefore, fractions
obtainedwill be absolute. Their disadvantages are that image correction
is not trivial and errors are always introduced. On the other hand, image
endmembers presents two advantages: 1) they are easily obtained and
2) they have the same scale of measurement as the data.

We used both types of endmembers to form the spectral librarywith
the candidate endmembers. On one hand, we extracted some end-
members from the spectral library based on AVIRIS data of California
area, and from the AVIRIS image. Specifically, the post-fire AVIRIS
image provided non-photosynthetic vegetation and ash spectra, and
the AVIRIS-based spectral library, providedmainly spectra from vegeta-
tion canopies (shrub, herb) and from impervious surfaces. On the
other hand, we also used endmembers extracted from the TM imagery,
mainly ash and vegetation canopies spectra. In this case,we selected the
endmember spectra based on three criteria: the Purity Pixel Index (PPI),
our knowledge of the study areas, and the general spectral shape of
the considered spectra. We first applied a minimum noise fraction
(MNF) transformation and the PPI algorithm. The MNF (essentially
two cascaded principal components transformations) was used to
determine the inherent dimensionality of image data, to segregate
noise in the data, and to reduce the computational requirements
for subsequent processing (Boardman & Kruse, 1994). The new MNF
transformed bands were then analyzed to find the most spectrally
pure (extreme) pixels in the image using PPI. The PPI image was
the result of several thousand iterations of the PPI algorithm. The higher
values indicated pixels that are relatively purer than pixels with lower
values (Environment for Visualizing Images, ENVI, 2009). Once the
purest pixels were identified, we selected visually from them the spec-
tral response of different endmembers by using local knowledge
and taking into account the general spectral shape of the considered
spectra.
3.2.2. Selection of optimal endmembers
Identifying a high quality set of reference or image endmembers has

been defined as a critical stage of mixture modeling (Tompkins et al.,
1997). A number of approaches have been developed for identifying
those spectra that are most representative of a specific class, yet also
least likely to be confused with spectra from a different class. In our
work, we used the following three techniques to select the most appro-
priate endmembers from the set of candidate endmembers: 1) Count-
based Endmember Selection (CoB): endmembers are selected that
model the greatest number of endmembers within their class (Roberts
et al., 2003). As a variation on this approach, a Count-based Index can
be used to rank endmember selection based on maximizing the models
selectedwithin the correct class, whileminimizing confusionwith other
classes; 2) Endmember Average RMSE (root mean squared error)
(EAR): endmembers are selected that produce the lowest RMSE within
a class (Dennison & Roberts, 2003); and 3) Minimum Average Spectral
Angle (MASA): endmembers are selected that have the lowest average
spectral angle (Dennison et al., 2004). All of these approaches together
with the MESMA algorithm are available in Visualization and Image
Processing for Environmental Research (VIPER) tools software
(Roberts et al., 2007) that was used in this work.

CoB determines the number of spectra modeled by an endmember
within the endmember's class (InCoB) and outside of the endmember's
class (OutCoB). It can be used to rank endmember selection based on
maximizing the models selected within the correct class, while mini-
mizing confusion with other classes. CoB uses the MESMA concept to
select endmembers based on the number of library spectra each
endmember models. The optimum model would have the highest
InCoB and lowest OutCoB (Roberts et al., 2003).
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EAR can be expressed as Eq. (1) shows:

EARi ¼
∑N

j¼1RMSEi;j
n−1

ð1Þ

where i is an endmember, j is the modeled spectrum, N is the number
of endmembers, and n is the number of modeled spectra. The “−1”
corrects for the zero error resulting from an endmember modeling
itself. As EAR is based on RMSE from a linear spectral mixing model,
it is influenced by albedo. A minimum (0%) and maximum (100%)
shade-fraction constraints was applied to decrease the likelihood
that very light or very dark spectra would be identified as highly
representative endmembers for their class by increasing the RMSE
of spectra that exceeded the shade fraction thresholds (Dennison &
Roberts, 2003). Finally, MASA is similar to EAR, but uses a spectral
angle (θ) as the error metric (Eq. 2).

MASAi ¼
∑N

j¼1θi; j
n−1

: ð2Þ

The spectral angle is calculated as displayed in Eq. (3) where ρλ is
the reflectance of an endmember, ρ′λ is the reflectance of a modeled
spectrum, Lρ is the length of the endmember vector and Lρ′ is the
length of the modeled spectrum vector. The length is calculated as
the square root of the sum of reflectance in each wavelength included
in the model (Youngentob et al., 2011).

θ ¼ cos−1 ∑M
λ¼1ρλρ

′
λ

LρLρ′

 !
: ð3Þ

3.2.3. Unmixing
Once the most appropriate endmembers were identified by using

the above-mentionedmeasures, theywere grouped into three different
spectral libraries. Our approach is based on assumption that every pixel
in original images can be modeled by a linear combination of three
land-cover types: NPV or ash, GV and soil. Shade is typically also present
in all pixels. Trials using just one or two spectral libraries showed that
three libraries (four endmembers) were needed to model accurately
the Landsat 5 TM images.

Thus, the original image was unmixed into those four endmembers
(NPV or ash, GV, soil, and shade) using MESMA. Performance of all
models for each pixel was evaluated by selecting the model with the
lowest RMSE, with the condition that the RMSE of the best-fit model
may not exceed some user-defined threshold. For the best-fit model
for each pixel, the fraction values for each endmember, and the identity
of those endmembers were recorded. Criteria used to evaluate models
using MESMA include fractions, maximum shade fraction and RMSE.
Similar to Roberts et al. (2003), Powell et al. (2007) and Roberts et al.
(2012), we used the following selection criteria: minimum and maxi-
mumallowable fraction values,−0.05 and1.05, respectively;maximum
allowable shade fraction value, 0.8; and maximum allowable RMSE,
0.025. When multiple models met these criteria, the model with the
lowest RMSE was selected.

By varying the set the spectra considered in each spectral library
each time, we could obtain different sets of fraction images. The more
adequate set of fraction images was selected visually in a first stage,
and secondly, by classifying the fraction images and computing the
accuracy of the severity level estimate. Therefore, the selection of the
number and type of spectra included in each spectral library as well as
the unmixing of the image, were remade until the fraction images
obtained allowed an accurate estimate. In some cases, when the
percentage of classified pixels was too low, the building of the spectral
library needed to be refined aswell by introducing a new type of spectra
that characterizes the unclassified areas.
3.3. Classification

Our classification stage included three steps. First, we constructed
an image of potential burned pixels from the fraction images (we
called ‘burned mask’). To do that, we selected the pixels that simulta-
neously met three conditions: 1) their NPV–Ash fraction was higher
than the average of the image; 2) their GV fraction was lower than
the average; and 3) their model included an “ash” endmember.
Second, we performed a shade normalization of the fraction images
obtained by dividing each endmember by the total percent cover of
all non-shade endmembers (1-shade fraction) in each pixel. This
suppresses the shade fraction so that we obtain more information on
the relative abundance of non-shade endmembers (Rogan & Franklin,
2001). Third, the ‘burned mask’ was applied to the shade normalized
fraction images (i.e. NPV–Ash, GV, soil).

Finally, an estimation of severity levels (U, L, M and H)was achieved
by classifying the masked shade normalized fraction images. A decision
tree was used as the classifier. Decision trees are rule-based classifiers
that employ a top-down induction approach to input data and recur-
sively partition data feature spaces into increasingly homogenous
classes based on a splitting criterion (Franklin, 1998; Friedl et al.,
1999). The efficiency of tree-classifiers, when compared to commonly
used classifiers such as maximum likelihood, has been attributed to
their non-parametric nature, in that they do not require assumptions
regarding the distributions of the input data (Friedl & Brodley, 1997).
We used the decision tree implemented in the R software (Ripley,
1996). The tree was grown by binary recursive partitioning. Numeric
variables are divided into ‘X b a’ and ‘X > a’, and the split which
maximizes the reduction in impurity is chosen; the data set split and
the process repeated. Splitting continues until the terminal nodes are
too small or too few to be split (Breiman et al., 1984). A minimum of
20 pixels per class was selected to train the tree.
3.4. Accuracy assessment

FollowingCongalton andGreen (2009), our study used the κ statistic
to measure the accuracy of the achieved severity level estimate. Overall
accuracy (OA), producer's accuracy (PA) (omission error) and user's
accuracy (UA) (commission error) for each class were calculated as
well. As ground reference, we used a minimum of 50 validation plots
per class defined from a 50 cm post-fire orthophoto inside the fire
perimeter. We defined the validation plots considering three burn
severity levels: high severity, moderate severity and low severity, and
the unburned class as well. Our sample unit is a plot of 50 × 50 m.
Classification of each plot was determined by visual inspection, based
on the observed majority burn severity class within each plot (Fig. 3).
Areas where the proportion of dead tree was over 90% (top dead)
were classified as H class (High severity level). Areas where the propor-
tion of dead tree was between 50 and 90% (top dead) were classified as
M class (Moderate severity level), and areas where the proportion of
dead tree was below 50%, giving a mosaic state between living and
dead individuals, were classified as L class (Low severity level). Addi-
tionally, we randomly sampled the surface outside the fire perimeter
(U class, Unburned), considering approximately the same percentage
of pixels as the percentage of pixels included in the validation plots
inside the perimeter.

Following Congalton and Green (2009) we utilized a minimum of
50 plots for each class of interest inside of the fire perimeter (that is,
finally we considered a little more than the 1% of the pixels inside the
fire perimeter). We also used a random scheme to select the 1% of the
pixels outside of the fire perimeters (U class, Unburned). It should be
noted that the results could be biased towards the use of satellite data
because our reference truth is based on canopy observations taken at
greater spatial resolution than the Landsat data, and our visual inter-
pretation, on the other hand, may be subjective.



Fig. 3. Example of validation plots (Ávila study area).
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4. Results

4.1. MESMA procedure

As indicated inMethods section, we built our spectral libraries using
spectra from three sources. From theAVIRIS imagewe extracted spectra
of two endmembers: ash and NPV. We also selected spectra from the
AVIRIS spectral library; specifically we chose spectra for the following
endmembers: non-photosynthetic herb, green herb, green shrub,
and impervious surfaces. All of the endmembers selected from AVIRIS
data were re-sampled to TM wavelengths before using them. We
complemented AVIRIS spectra with image endmembers from some of
the purest pixels from the Landsat 5 TM images. Image endmembers
included ash, un-irrigated lands, irrigated crops, vegetation species
and soils representative of each study area. Regarding vegetation spe-
cies, we used: P. pinaster, and Quercus sp., in the Guadalajara study
area; P. pinaster, P. sylvestris, Q. pyrenaica, and Q. ilex in the Ávila study
area; and, in the Tenerife study area, P. canariensis, E. arborea, and
M. faya. As regards soils, the Tenerife study area displayed a higher
variety: we defined till four different types of basaltic rocks.

After computing for CoB, EAR and MASA, we selected the
endmember signatures with the highest CoB, and also the lowest EAR
and the lowest MASA. Working in this way, we could reduce the num-
ber of spectra that form the final and definitive spectral library. The
selected spectra were grouped into different spectral libraries to allow
us to unmix various combinations of two, three and four endmembers.
In the three study areas, the combination that leads to the highest
accurate burn severity estimation was to use three spectral libraries:
NPV–Ash, GV and soil. Typically, and as Table 2 shows, the NPV–Ash
library included the following types of endmembers: NPV and ash
from the AVIRIS image, non-photosynthetic herb from the AVIRIS-
based spectral library, and ash and un-irrigated lands from the Landsat
5 TM image. The GV library comprised: green herb and green shrub
from the AVIRIS-based spectral library, and irrigated crops and vegeta-
tion representative of each study area from the Landsat 5 TM images.
Finally, the soil library included: impervious surfaces (asphalt and
gray gravel roof) from the AVIRIS spectral library, and soils representa-
tive of each study area from the Landsat 5 TM images. To summarize,
the reference endmembers provided information general or common
to all study areas, whereas the image endmembers mainly provided
information specific to each study area. Despite the similarity between
Californian and Mediterranean vegetation, we needed to include in
each study area its specific vegetation species and soil types. Thus,
green vegetation endmembers were mainly defined from each Landsat



Table 2
Spectral libraries and endmembers used in the MESMA procedure.

Spectral
library

Endmember Endmember type Number of endmembers

Guadalajara Ávila Tenerife

NPV and
Ash

NPV Reference (APFI) 3 – 1
NP herb Reference (ASL) 1 – 1
Ash Reference (APFI) – – 2
Ash Image 9 4 –

Un-irrigated lands Image – 2 –

Total 13 6 4
GV Green herb Reference (ASL) 1 1 –

Green shrub Reference (ASL) 1 1 –

Irrigated crops Image 1 2 1
Vegetation speciesa Image 2 7 4
Total 5 11 5

Soil Impervious surfaces Reference (ASL) – – 1
Soilsa Image 4 5 4
Total 4 5 5

Note: NPV:non-photosynthetic vegetation; NP: non-photosynthetic; GV: green vegetation;
APFI: AVIRIS post-fire image; ASL: AVIRIS-based spectral library.

a Vegetation species/soils representative of each study area.
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5 TM image. As an example, Fig. 4 shows some of the spectra of each
spectral library used to unmix the Ávila study area post-fire image,
letting us to compare the spectra of the three different sources.

Using the definitive spectral libraries, 99.5%, 99.8% and 98.7%, of
the pixels met the 0.025 RMSE criterion at Guadalajara, Avila and
Tenerife, respectively. It is remarkable that these values represent
almost the 100% of the images. Fig. 5 shows the set of fraction images
finally obtained in the Ávila study area. It is possible to observe visually
that both NPV–Ash and GV fraction images clearly identify the burned
area. The image reporting model number (the specific combination of
spectra used in each pixel to unmix the image) also clearly shows the
burned area.

4.2. Classification

Using the previously mentioned NPV–Ash and GV fraction images
and the number of model image, we defined a ‘burned mask’ that
groups all the potential burned pixels (regardless their severity level).
Before applying the mask to the fraction images, they were shade
normalized. We decided that the best option is to permit a high com-
mission error in this mask, assuring that all the burned pixels were
selected. The next classification step (decision tree classifier) deals with
the task of reducing such error.

Due to the existence of unburned pixels in the masked shade
normalized fraction images (commission error), we considered more
Fig. 4. Example spectra from the spectra
than the four classes of interest (H, M, L, and U) to classify them. All of
the study areas shared 4 classes: H, M, L, and ‘Empty’ (pixels that
were not selected by the ‘burned mask’). In addition, we defined GV,
‘soil’ and ‘reservoir’ classes in the Guadalajara study area, GV class in
the Ávila study area, and ‘ria’ (inflow of sea water into a river) and
two types of ‘volcanic lava’ classes in the Tenerife study area. A mini-
mumof 20 pixels per class of interestwere selected to train the decision
tree classifier. After the classification process, the unburned classes
(‘Empty’, GV, ‘soil’, etc.)were re-combined into theU class and amedian
3 × 3 filter was applied to the whole image to reduce the ‘salt and
pepper’ noise. The MESMA-based estimates of the burn severity levels
obtained can be seen in Fig. 6. Table 3 displays the performance of the
decision trees. The residual mean deviance was below 0.3 in the three
study areas, and the accuracy of classifications (based only on training
data) was always higher than 90% (from 92.2 to 97.5).

4.3. Accuracy assessment

To assess the accuracy of burn severity level estimates,we computed
for κ statistic, OA, PA and UA. Over 50 validation plots per considered
class were defined from a 50 cm post-fire orthophoto inside of fire
perimeter (Table 4). For instance, in the Ávila study area, this implied
that 566 pixels of a total of 46,485 pixels were inside the perimeter
(1.21%) (see Fig. 3). We also selected randomly 1% of the pixels outside
the fire perimeter as reference data (7839 pixels).

Table 5 shows the accuracies of MESMA-based burn severity levels
estimates. Fraction images produced severity level estimates with high
accuracy (κ statistic > 0.78) and quite balanced PA and UA, showing
moderate UA values in L and M classes. PA and UA of the H class have
values relatively high in Ávila and Guadalajara study areas. Tenerife
study area displayed, however, PA and UA values in the H class lower
than in the other two study areas, though more than acceptable.

5. Discussion

Although there are no studies that use MESMA-based fraction
images to estimate burn severity levels, SMA (usually implementing at
least the green vegetation and char endmembers) has proven to be effi-
cient in detecting a charcoal signal. Unmixing is therefore advantageous
versus other methods because of its strong capability to distinguish
between burn and other sparsely vegetated areas (Rogan & Franklin,
2001). Overall, our results complement the findings of a small number
of previous studies (e.g. Fernández-Manso et al., 2009; Landmann,
2003; Rogan & Franklin, 2001; Smith et al., 2007a; Sunderman &
Weisberg, 2011) that support the use of SMA in mapping burn severity
due to its ability to produce fractions representative of sub-pixel
l libraries used in Ávila study area.



Fig. 5. Fraction images (Ávila study area).
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components directly related to burn severity. Our study shows that
MESMAmay be used to derive fraction images fromwhich estimate ac-
curately burn severity, extending the applicability of MESMA.

To provide a better understanding of the MESMA performance in
burn severity estimation, Fig. 7 displays the fraction image average
inside each class of the estimated severity level (Ávila study area).
From this figure, we can follow the differences in the values of fraction
images for each class. Compared to all burn classes, U class is character-
ized by low values in NPV–Ash fraction (meaning low NPV content, and
no ashes), medium values in soil fraction and the highest values in GV
fraction. L class shows a low value in the NPV–Ash fraction (meaning
no NPV, and small quantity of ash), a medium value in soil fraction
and a high value in GV fraction. M class displays an increase in the
NPV–Ash fraction due to the increase of ash, and a decrease in soil and
green vegetation to compensate the increase in ash. Finally, H class con-
tinueswith the tendency ofM class: an increase in theNPV–Ash fraction
and a decrease in soil and GV fractions.

Additionally, from Fig. 7 it is possible to observe some differences
among the three considered fires.We observed in the three study areas
how the proportion of NPV–Ash increased from U class to H class and
the proportion of GV decreased. The soil proportion displayed a more
irregular pattern among the considered study areas, due probably to
differences in vegetation and soil type, and fire evolution. The differ-
ences are more evident in Tenerife study area where the proportion of
soil are high for all burn classes. The reason is that, as mentioned in
Section 2, the study area is located over a volcanic surface where vege-
tation is sparse, especially in high elevation areas.

However, we would like to note that a careful selection of
endmembers plays an important role in the MESMA approach. The de-
termination of endmembers is a critical step to estimating fractional
covers accurately. General criteria for a good set of endmembers include
linear independency, spectral representativity and spatial generality
(Maselli, 1998). High correlation between spectra of endmembers pro-
duces an ill-conditioned model and estimates from the decomposition
are unreliable, while the use of non-representative endmembers yields
large errors in estimates of endmember fractions (Li et al., 2005). A
method commonly used in SMA-based studies is the combination of
MNF transformation and PPI index (Bedini et al., 2009; Fernández-
Manso et al., 2009; Li et al., 2005; Rosso et al., 2005). By contrast, we
used three indexes to select the most appropriate endmembers to
build the definitive spectral libraries: CoB (Roberts et al., 2003), EAR
(Dennison & Roberts, 2003) and MASA (Dennison et al., 2004). In addi-
tion, three sources provided us the candidate endmembers: a post-fire
2009 AVIRIS image, a pre-fire 2007 AVIRIS image, and Landsat 5 TM
images. The use of reference endmembers from California, also a
Mediterranean ecosystem, complemented the set of image end-
members from the Landsat 5 TM data. This procedure leaded to an
optimal selection of endmembers, and thus, from the fraction images
we could calculate an accurate burn severity estimate.

We acknowledge that the method, as proposed in the present
paper, would be applied routinely in an operational scenario with
difficulty. Although we provided a single method to build the spectral
libraries (combining reference and image endmembers from two
Mediterranean ecosystems) and an objective method to select the
most appropriate endmembers, we recognize that the unmixing and
later classification processes need some supervision. To simplify the
building of the spectral libraries, we will consider in a future work the
use of the same potential spectral library to all forest fires, although
we accept that non-species-specific spectral curves may not provide
an optimal unmixing result (Lentille et al., 2009). Different authors
have remarked that spectra of senesced vegetation, green vegetation
and char are broadly similar across a wide range of environments



Table 4
Number of validation plots (and corresponding pixels) defined inside the fire perimeter.

Fig. 6. MESMA-based burn severity estimates, top-left: Ávila study area, down-left: Guadalajara study area, right: Tenerife study area.

85C. Quintano et al. / Remote Sensing of Environment 136 (2013) 76–88
(Lentille et al., 2009; remote sensing for prediction of 1-year post-fire;
Hudak et al., 2007; Smith et al., 2007a). However, in spite of the disad-
vantage of needing some supervision in the unmixing process, LSMA
presents a great advantage over the spectral indexes used commonly
to estimate burn severity: fractions images have a physical meaning,
thus they are easy to relate to traditional field measurements of burn
severity (easy of measure as well).

Simple LSMA, in which a single suite of endmembers are applied
to the entire image, limits the number of endmembers to N + 1
bands, although spectral dimensionality is often even lower than this
(Roberts et al., 1993). By contrast, MESMA allows a greater number of
endmembers, often exceeding the number of bands (e.g. Powell et al.,
2007), while also allowing the number and type of endmembers to
vary for each pixel within an image (Myint & Okin, 2009; Roberts
et al., 1998). In this study, the ability to incorporate a larger number of
endmembers to calculate fraction images and map burn severity was
critical. First, this enabled us to incorporate five endmembers into the
analysis, modeling each pixel as a combination of GV, soil and shade
and either NPV or ash. By incorporating NPV into the analysis, this
improved the discrimination of burned areas by reducing the confusion
caused by bright soils (i.e., burned trunks and branches could add valu-
able information). Furthermore, this enabled us to account for spectral
variability within an endmember class. For example, at the Guadalajara
Table 3
Decision tree classifier results.

Study areas Guadalajara Ávila Tenerife

Number of terminal nodes 12 7 8
Misclassification rate 0.0567 0.0781 0.0248
Residual mean deviance 0.3079 0.3138 0.1389
Accuracy (based on training data) 94.3 92.2 97.5
study area the NPV–Ash component required 13 different spectra.
Specifically, we used between 4 and 13 in the NPV–Ash spectral library,
between 5 and 11 in the GV spectral library, and between 4 and 5 in the
soil spectral library between the three study sites (see Table 2).

Some of the forest fires considered in this paper have also been
studied by others. De Santis and Chuvieco (2007) compared simulation
model inversion and empirical fitting to estimate burn severity levels in
Guadalajara study area. They observed that the model inversion was
more accurate than the empirical approach when high severity level
was considered. Considering The Guadalajara forest fire as well, the
same authors (De Santis & Chuvieco, 2009) proposed GeoCBI as an
alternative to CBI in Mediterranean countries that takes into account
the vegetation fraction cover (FCOV) to compute burn severity of the
total plot. de Santis et al. (2009) proposed an improved simulation
model to estimate burn severity from satellite data that was also tested
in the mentioned study area. Model inversion results showed accurate
estimations of GeoCBI values. Comparison among our MESMA-based
severity level estimates and the severity level estimates obtained by
the De Santis and Chuvieco (2007), or de Santis et al. (2009) at the
Guadalajara study area is difficult because we lack quantitative
Class Guadalajara Ávila Tenerife

V. plots V. pixels V. plots V. pixels V. plots V. pixels

U 45 180 40 111 43 132
L 79 316 49 133 105 325
M 57 228 51 146 67 216
H 107 428 60 176 86 280

Note: U: Unburned class, L: Low severity level class, M: Moderate severity level class,
H: High severity level; V. plots: Number of validation plots; V. pixels: Number of
validation pixels.



Table 5
Producer accuracy (PA) (percent) and User accuracy (UA) (percent) per class of burn severity level, Overall accuracy (OA) (percent), and κ statistic of burn severity level estimates.

Guadalajara Ávila Tenerife

U L M H U L M H U L M H

PA 98.16 81.01 67.98 79.21 98.26 83.46 83.56 96.02 96.96 83.38 75.93 69.64
UA 98.88 61.84 74.88 82.48 99.77 50.45 69.71 93.89 98.68 67.58 66.67 76.47
OA 95.94 97.73 93.91
κ 0.80 0.81 0.78

Note: U: Unburned class, L: Low severity level class, M: Moderate severity level class, H: High severity level class.
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information. Visual comparison of thefinal severity levelmap (Fig. 7, De
Santis & Chuvieco, 2007; Fig. 8, De Santis et al., 2009) allows us to affirm
that the results are similar in general terms. As de Santis et al. (2009)
affirmed, all burn severity maps show three high severity areas that
represent the majority of pixels, separated by two NE–SW diagonal
belts with lower values. Main differences arise in these lower values:
our MESMA-based estimate suggests that the lower values are mainly
unburned areas or areas affected with low severity. By contrast, these
areas are classified as medium–low burn severity by De Santis.

After classifying the normalized fraction images, we applied a 3 × 3
median filter to reduce high frequency variations (‘salt and pepper’
noise) and portray only the burn severity levels. This filtering is a com-
mon post-classification procedure to remove outliers or impulse-like
noises (Gao, 2009; Mather, 2004) that helps to increase the accuracy
of classified image. We did not evaluate how the smoothing (of all
image, only of areas inside the burned perimeter, or only of areas out-
side burned perimeter; pre- or post-classification) affected the UA and
PA. Several studies (Quintano & Cuesta, 2010; Quintano et al., 2011),
however, have shown that a pre-classification filtering of every pixel
in the image increases the accuracy of burned area estimates from
remote sensed satellite data. PA and UA values for each burn severity
class were quite balanced in all study areas, with the exception of L
class, that showed lower UA values than PA values. This higher commis-
sion error for L class could correspond with a slightly higher omission
Fig. 7. Fraction image average value in each severity level class. Left: Guad
error for M class in Guadalajara study area, suggesting some confusion
between L and M classes.

Severely burned areas are a focus for land managers after wildfire.
Minimizing classification errors for the high severity class will prove
beneficial to land managers since it allows identification of more
areas that are severely burned (Miller & Thode, 2007). In this study,
MESMA-based burn estimates resulted in high PA and UA values for
each burn severity class in all study areas, especially for H class. Tenerife
study area had lower PA and UA values in this class due probably to the
terrain complexity that increased the difficulty tomodel it correctly. It is
a mountainous area with different volcanic soils.

There is no single consistent method that can be applied to assess
burn severity via remote sensing, making additional ecosystem-
specific studies that relate field-based measures of burn severity to
remote sensing observations critical (French et al., 2008; Key, 2005).
In Spain, a Mediterranean country, we have validated the proposed
MESMA-based method that we believe could be extensible to other
Mediterranean ecosystems. Further work with MESMA-based fraction
images in a multi-temporal change detection context should provide
greater reduction in confusion between the different severity levels.
Sunderman and Weisberg (2011) stated that using SMA in a change
detection context (dSMA), with multi-temporal imagery, seems prom-
ising for reducing this error associated with background conditions
in areas that burned repeatedly, because if changes in sub-pixel
alajara study area; center: Ávila study area; right: Tenerife study area.
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proportions of the environmental elements that are commonly
confused with burned areas can be accounted for, the burned area
perimeter should become more spectrally distinguishable. This will be
examined in a future work.

6. Conclusion

Spectral indexes are commonly used to map post-fire effects. The
relationship between these spectral indexes and burn severity in the
Mediterranean countries is, however, subject of numerous research
studies, showing a lack of a definitive methodology to accurately
map burn severity in these countries. In this study, a MESMA-based
methodology for burn severity accurately mapping at regional scale in
Mediterranean countries from Landsat 5 TM data was validated in
three study areas located in Spain. Shade normalized fraction images
from MESMA were classified by a decision tree in four classes:
unburned, low, moderate and high severity levels. The comparison of
the burn severity level estimates in relation to the GPS burned area
perimeters andpost-fire orthophotographs shows that themethodology
adequately maps the severity levels.

The accuracy (κ statistic) of theMESMA-based burn severity estimate
was high. PA and UA values were quite balanced and high for the high
severity level class. However, we would like to acknowledge that a care-
ful selection of endmembers that represent all land covers under study
plays an important role in the MESMA-based approach. In our study,
the definitive spectral library comprised both image and reference
endmembers, and CoB, EAR and MASA allow an optimal selection of
definitively used endmembers. A four-endmember model (NPV–Ash,
GV, soil and shade) leads to the most accurate burn severity estimates.

We conclude that the MESMA-based proposed method may help
to provide a better understanding of severity levels patterns that
can be helpful to fire management agencies.
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