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Abstract

Scolytid beetles (Coleoptera: Curculionidae: Scolytinae) are a large group of beetles associated

with many tree species. Some species consume dead wood and vector an array of fungi which

contribute to recycling of organic material, so are often an important component of forest

ecology. However, populations can increase to pest levels. In this review, we look at options for

control of scolytid pests of Pinus spp. Pines, valued for their softwood and pulp, are grown

commercially in many countries. Both indigenous and exotic species of bark beetle are pests of

pines. There have been numerous approaches to reducing the impact of bark beetle attack on

pines. Management strategies have included thinning stands and timing of harvesting and planting,

through to efforts to predict outbreaks. Bark beetles use semiochemicals to locate hosts and

attract conspecifics and these have been used to trap or repel beetles, or disrupt their behaviour.

Chemical pesticides have been used, especially for protection of high-value trees. Pesticides can

be effective in some situations, but the commonly used actives such as organophosphates and

pyrethroids have non-target and other health and safety concerns. There have been few successful

introductions or applications of natural enemies (predators, parasitoids and microbial pathogens)

reported for scolytid pests of pines. The cryptic, within-tree, habitats used for much of the bark

beetle life cycle provide significant protection against most forms of control. Successful control will

require novel approaches and will likely involve multiple agents and strategies.
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Review Methodology: We used standard databases including CAB Abstracts and ISI Web of Knowledge using bark beetle(s),

Scolytidae, scolytid(s), control, Pinus and pines as search words. Key references were also found in recent papers. Colleagues were

consulted and some of our own research findings included.

Scolytid Pests of pines

The scolytids (Coleoptera: Curculionidae: Scolytinae) are

a subfamily of bark beetles and wood borers, which affect

many plant species. They include over 6000 species

worldwide, with some 1430 species in North and Central

America [1, 2]. They are a very diverse group in terms of

biology and ecology, and are often integral species in

ecosystem health, aiding forest regeneration by killing

unhealthy trees. Although most species will only colonize

dead, dying and stressed trees, some can attack and kill

healthy trees [1, 3, 4]. Through disruption events such as

storms or fire, through human-induced events, and pro-

moted by the use of monoculture plantings, beetles can

reach epidemic populations, causing major damage to

healthy trees [5, 6].

Scolytids attack a wide range of plant species, but this

review will be limited to those that attack the trees of

Pinus spp. There are over 100 species of pine, many of

which are commercially exploited for their wood [7].

Pines are native to most of the northern hemisphere and

have been extensively planted as exotic production trees

elsewhere in the world. These evergreen, resinous soft-

wood trees are considered the most ecologically and
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Table 1 Some common scolytids associated with Pinus spp.

Species Common names Main Pinus host(s) Regions affected References

Dendroctonus
adjunctus

Roundheaded
pine beetle

Pinus spp., especially
P. montezumae, P. ponderosa

Mexico, USA, Central
America, Caribbean,
Guatemala

[75]

Dendroctonus
brevicomis

Western pine
beetle

P. coulteri, P. ponderosa North America [5, 184]

Dendroctonus
frontalis

Southern pine
beetle

Pinus spp., primarily P. taeda,
P. echinata, P. virginiana,
P. rigida

North America, central
America

[185, 186]

Dendroctonus
ponderosae

Mountain pine
beetle

P. contorta var. latifolia,
P. lambertiana, P. monticola,
P. ponderosa

North America [187]

Dendroctonus
terebrans

Black turpentine
beetle

Pinus spp. especially P. elliottii,
P. taeda

North America [188–190]

Dendroctonus
valens

Red turpentine
beetle

P.tabuliformis, P. ponderosa,
P. lambertiana, P. strobes,
P. resinosa, P. bungeana

China, North America,
Mexico

[27]

Hylastes ater Black pine bark
beetle

P. radiata, P. sylvestris Europe, Chile,
New Zealand, Australia

[26, 191–193]

Hylastes
angustatus

P. sylvestris, P. rotundata,
P. pinaster, P. nigra, P. pinea

Central and South
Europe, South Africa

[20, 194]

Hylastes linearis P. halepensis, P. pinaster,
P. brutia, P. nigra, P. sylvestris

South Africa, Russia,
Tunisia, Algeria, Cyprus,
Southern Europe,
Canary Islands

[194, 195]

Hylastes opacus Bark beetle P. sylvestris, P. resinosa Scandinavia, Russia,
China, South Africa,
North America

[22, 46, 195]

Hylastes parallelus Pine bark beetle P. tabuliformis China, Korea [196]
Hylurgus ligniperda Goldenhaired

bark beetle,
red-haired pine
bark beetle

P. sylvestris, P. nigra,
P. halepensis, P. brutia,
P. pinaster, P. pinea, P. radiata

Europe, Turkey, Algeria,
Russia, New Zealand,
Australia, South Africa,
California, Chile, Brazil,
Uruguay

[20, 191, 194,
197]

Ips avulses Small southern
pine engraver

P. strobes, P. taeda, P. palustris,
P. rigida, P. serotina, P. clausa,
P. echinata, P. elliottii,
P. virginiana

North America [198, 199]

Ipis calligraphus Sixspined ips P. ponderosa, P. strobus North and central
America, Caribbean,
Philippines, south Africa

[199, 200]

Ipis grandicolis Eastern
fivespined ips,
five-spined bark
beetle

P. strobes, P. banksiana, P. taeda,
P. palustris, P. rigida, P. serotina,
P. clausa, P. sylvestris,
P. echinata, P. elliottii,
P. virginiana, P. palustris,
P. caribaea, P. cubensis,
P. kesiya, P. maestrensis,
P. oocarpa and P. tropicalis,
P. pinaster, P. radiata

North America, Australia,
Central America,
Caribbean

[199, 201]

Ips pini Pine engraver P. ponderosa, P. jeffreyi,
P. contorta var. latifolia,
P. banksiana, P.resinosa,
P. nigra

North America [202]

Ips sexdentatus Stenographer
bark beetle,
sixtoothed bark
beetle, ips
engraver beetle

P. sylvestris, P. nigra,
P. leucodermis, P. sibirica,
P. koraiensis, P. brutia

Europe, Caucasus,
Turkey, Siberia, Korea,
Japan, North China

[14, 194]

Orthotomicus
erosus

Mediterranean
pine engraver
beetle

P. halepensis, P. canariensis,
P. brutia, P. pinaster, P. pinea,
P.nigra, P. sylvestris

Chile, Israel,
South Africa, Central
and South Europe,
Israel, Morocco,
Tunisia, Algeria,
Crimea, Caucasus,
North America

[20, 191, 194]
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commercially significant tree genus in the world. Mono-

cultures of Pinus spp. can provide very suitable environ-

ments for bark beetle outbreaks [8].

There are many bark beetle species that attack pine

and cause significant damage (Table 1). The last decade

has seen exceptional levels of tree mortality, with bark

beetles reported as a significant factor, especially in

North America [9, 10]. Species of Dendroctonus (e.g.

Dendroctonus ponderosae Hopkins, Dendroctonus frontalis

Zimmermann, Dendroctonus valens LeConte) are major

pests in North and Central America, and China. In the

southern USA, the southern pine beetle, D. frontalis, is the

major insect pest of pine species, especially loblolly and

shortleaf pine [11]. In western Canada, outbreaks of

D. ponderosae are currently causing ‘landscape-levelling’

mortality of lodgepole pine, Pinus contorta var. latifolia [10].

The current epidemic is estimated to have resulted in

a cumulative total loss of over 750 M cubic metres of

timber, with over 17.5 Mha affected in British Columbia

alone [12]. The leading edge of the epidemic has now

crossed the Rocky Mountains into central Alberta,

Canada, and there has been a host switch to jack pine,

Pinus banksiana Lamb [13], threatening large forest areas.

Attacks by other bark beetle species cause millions of

dollars of damage each year. The Eurasian bark beetle, Ips

sexdentatus (Boerner), has caused massive damage after

disruption events. Storms in south-western France in

1999 [14, 15] caused 27 M cubic metres of fallen timber

[16] and resulted in population outbreaks that allowed

mass attack on standing trees. The 2009 storm ‘Klaus’ left

42.4 M cubic metres of fallen Pinus pinaster Aı̈t, and is still

affecting population levels [15]. Fire in Central Spain

damaged over 12 000 ha of trees in 2005, leading to out-

breaks of I. sexdentatus in the subsequent years [17]. The

rare Torrey pine, Pinus torreyana Parry ex Carr., was

decimated by Ips paraconfusus Lanier in California in

1988–92 [18]. These are a few examples of the massive

damage bark beetles can cause in pines.

The sub-cortical life cycle of scolytids allows survival in

transit, making them a globally important biosecurity

threat. In many ‘new world’ countries, introduced pine

beetles are the major pests of Pinus spp. plantations. For

example, the red turpentine beetle, D. valens, was first

found in China in the 1980s, and by 2005, more than 10 M

Pinus tabuliformis Carr. were killed or damaged by beetle

attack [19]. The genus Hylastes contains species that have

been accidentally introduced into several countries. These

include Hylastes angustatus (Herbst), Hylastes linearis Er.

and Hylastes opacus Er. into South Africa [20, 21],

H. opacus into North America [22] and Hylastes ater

(Paykull) into New Zealand [23, 24], Australia [25, 26] and

Chile [27]. Where no external disturbances have occur-

red, H. ater has not been recorded as a pest; however,

in ‘second rotation’ (i.e. replanting in the same location)

populations can reach epidemic/economic levels [20, 23,

28], at times killing almost all seedlings [25–27, 29].

Vectors of disease

Fungi from 38 genera have been identified as being asso-

ciated with conifer-killing bark beetles in North America

alone [30]. Some of these fungi are phytopathogenic and

play an important role in helping more aggressive bark

beetles colonize and kill trees (e.g. members of genus

Dendroctonus) [31, 32]. In this situation, fungi are intro-

duced into the tree during the process of beetle coloni-

zation, and tree mortality probably occurs as a result of

the combined stress caused by the feeding activity of the

beetle and fungi colonizing the host tree. Once introduced

into trees these fungi may colonize the sapwood and

disrupt the flow of water to the crown, killing the tree.

Host responses to beetle attack are more complicated

when fungi are associated with bark beetles [33]. Most

authors support the notion that beetles and fungi are

mutualistic symbionts (e.g. [34]). Many scolytids have

Table 1 (Cont.)

Species Common names Main Pinus host(s) Regions affected References

Pityogenes
calcaratus

Bark beetle P. halepensis, P. brutia,
P. pinaster, P. sylvestris

Mediterranean countries,
Portugal, Syria,
Palestine, Algeria, Israel

[194]

Tomicus destruens Pine Shoot Beetle P. halepensis, P. canariensis,
P. brutia, P. pinaster, P. nigra,
P. radiata

Southern Europe,
Cyprus, Algeria,
Palestine, Israel

[194]

Tomicus minor Lesser pine shoot
beetle

P. sylvestris, P. mugo,
P. rotundata, P. strobus, P. nigra,
P. halepensis, P. densiflora,
P. brutia, P. koraiensis,
P. thunbergiana, P. pinea

Europe, Corsica,
Caucasus, Turkey,
Siberia, South China

[194, 203]

Tomicus piniperda Pine shoot beetle,
common shoot
beetle, larger
pine shoot beetle

P. sylvestris, P. pinaster,
P. uncinata, P. radiata

Scandinavia, Europe,
Georgia, Asia, North
America, North Africa

[140, 204]
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specialized structures, or mycangia, which may be simple

pits or more specialized morphological structures, found

on the head, pronotum or elytral areas, that carry yeasts

and other fungi that are nutritionally beneficial to bark

beetles [34, 35].

Less aggressive scolytids have been demonstrated to

vector non-phytopathogenic members of the Ophiosto-

mataceae (including Ophiostoma spp.) that inhabit living

or recently dead wood and are commonly found in the

galleries of scolytids [36]. Ophiostomataceae can be the

cause of sapstain in conifer wood. In New Zealand, sur-

veys of beetles and larvae showed that ophiostomatoid

fungi were associated with adults, larvae and pupae of

both H. ater and another bark beetle, Hylurgus ligniperda

(Fab.) [37–39]. H. ater was demonstrated to vector sev-

eral ophiostomatoid species to Pinus radiata D. Don in a

study assessing fungal colonization associated with H. ater

feeding damage [37]. However, a subsequent study of

the same sites, approximately 3 years following planting,

found that no seedlings were infected with ophiostoma-

toids, indicating that fungi were unable to persist for

extended periods in seedlings [37].

The relationship between scolytids and fungi has been

considered a significant mechanism for the introduction

of fungi into many countries, and is of concern in an age

of increased global trade and alien species invasions, with

exotic beetles potentially vectoring suites of fungi and

other organisms (e.g. mites and nematodes) [40]. Even

if the beetles themselves fail to establish, the associated

fungi may be established in native species and the potential

for unpredictable vectoring relationships exist [41].

Life cycle

The Scolytinae are one of the few insect subfamilies

where the adult can penetrate the protective outer bark

of woody plants. Most scolytids feed on the inner bark

of dead woody plants [2], but different species have

preferences for different age, species and portion of

plants. This habitat niche provides some benefits, such as

protection from environmental extremes and natural

enemies [42]. With the exception of a brief period of

short flight, scolytids complete their whole life cycle

within the host plant [2]. The young of each generation

usually reach their new host by migration as adults rather

than minor movements [43, 44].

Bark beetles have adapted to rapidly increase numbers

when suitable habitats are found [2, 20, 45–49]. The ability

to find suitable breeding substrate is the limiting factor of

all bark beetles in the natural environment, as the dis-

persal phase has been shown to account for up to 80% of

mortality [20, 45, 46, 50]. The search for hosts is based on

a number of behavioural mechanisms, which use visual

[51], semiochemical [52] or gustatory cues [53]. Chemical

cues signalling the presence of suitable substrates seems

to play a major role during the selection phase [52].

Complementary hypotheses have been proposed in which

the dispersing beetles would exploit semiochemicals to

select between suitable habitats or host stands, as well as

between non-hosts, suitable hosts or non-suitable hosts

occupied by conspecifics or heterospecifics [54, 55].

Attraction to kairomones is thought to be a dominant

cue to help beetles distinguish the most appropriate host

[46]. For D. valens, the principal attraction monoterpene

components in ponderosa pine are b-pinenes, 3-carene

and an a-pinene [56]. Similarly, Tomicus piniperda (L.) uses

a-pinene and other oleoresin volatiles to locate suitable

brood material [57, 58]. Schroeder and Lindelöw [59]

observed enhanced attraction by Hylastes cunicularius Er.

and Hylastes brunneus Er. to a-pinene and ethanol.

Attraction differed with varying rates of ethanol release,

reflecting differences in breeding substrate. Volatiles

released by non-hosts are also used as cues in the

selection of appropriate breeding substrate [55].

In addition, bark beetles use aggregation pheromones,

such as ipsdienol and lanierone produced by Ipis pini [60],

to attract conspecifics, produced both through modifica-

tion of host compounds and de novo, and to coordinate

mass attacks on host pine in order to overcome tree’s

defences [1, 52, 61, 62]. Aggregation pheromones were

first discovered in bark beetles for I. paraconfusus [63] and

have been described in many other species thereafter

[61]. Anti-aggregation pheromones may also be released

to prevent the overcrowding of colonized trees [11], such

as verbenone (4,6,6-trimethylbicyclo[3.1.1.]hept-3en-

2-one) or MCH (methyl ciclo hexanone(3-methylcyclo-

hex-2-en-1-one) [64, 65].

The interactions between beetles, pheromones and

host volatiles can be complex. For example, D. valens is

attracted to host volatiles more strongly in the presence

of pheromones produced by Dendroctonus brevicomis and

Ips spp., while pheromones of these species are weakly

attractive to D. valens [31, 66]. Some host chemicals may

be attractive at low, but not high concentrations, such as

4-allylanisole [1-methoxy-4-(2-propenyl) benzene] (pre-

sent in oleoresin of various pines) to D. valens when

released at low rates, but not high rates [19, 67].

Those few species that may colonize and kill healthy

trees are termed ‘aggressive’ or ‘primary’ species, and are

the first organisms to invade plant tissue that is otherwise

un-infested and capable of mounting a defensive reaction

[1, 26, 37]. ‘Non-aggressive’ or ‘secondary’ species, in

turn, are those that colonize dead or dying trees, or trees

that may have been previously attacked [31, 32, 45, 68].

Most Scolytinae are indeed saprophytic, and colonize dead

trees or tree parts [1, 68].

Control Options

Scolytid beetles in pine are a constant and serious pest for

many forests. Consequently, there have been many con-

trol options used or investigated. These may be divided
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into the following approaches: management of forests,

chemical pesticides, semiochemical-based and natural

enemies.

Management to reduce beetle damage

Management is probably the most common approach

for reducing bark beetle impacts. Management practices

that contribute to the reduction of pest populations or

damage include those that prevent potential outbreaks,

methods to predict outbreaks, detection and monitoring

of populations through to direct control. Sanitary felling

of trees was the basic control strategy for bark beetles

for hundreds of years and ‘trap trees’ were first recom-

mended at the end of eighteenth century for Ips typo-

graphus L. in spruce [69]. This typical management

approach is broadly practiced across the world, and

basically consists of frequent search for new infestations,

followed by felling and mass trapping, either using trap

trees, sometimes treated with insecticides (i.e. ‘lure and

kill’ [70]), or wood heaps or pheromone traps [69].

Stand thinning was proposed by Eaton [71] as a method

to reduce beetle attack, theorizing that it would increase

the vigour of trees by removing competition. A number of

studies examined stand thinning for influence on beetle

attack, as effects are variable (reviewed in [72]). White-

head and Russo [72] examined trial sites in British

Columbia that used stand thinning of lodgepole pine as a

‘beetle-proofed’ treatment for the mountain pine beetle

(D. ponderosae). Unthinned stands required interventions

to prevent outbreaks, but only one of five of the thinned

stands needs such an intervention. They concluded that

the effect of thinning was less a factor of tree vigour, and

more a factor of inter-tree spacings over 4 m between

trees reduced the frequency of attacks by beetles. How-

ever, several beetle species (i.e. Ips spp.) are attracted to

trees during thinning operations, limiting the timing of

thinning in some locations.

Prevention has also been a tool for reducing damage

from bark beetles. Removal of breeding material, such as

fallen trees, can prevent bark beetle population build up.

Following large storms in France in 1999, the removal of

wind-thrown trees to reduce breeding material was the

only effective method [41]. However, log piles of re-

moved material also contributed to subsequent outbreaks

of I. sexdentatus [16]. Grégoire et al. [6] also noted that

delays to tree removal (e.g. resulting from sale processes)

could reduce the effectiveness of the approach of cutting

and removal of infested material, as the infestation could

increase before felling was able to take place. When the

removal of infected material is not feasible, cut and leave

tactics have been recommended for D. frontalis, but this

results in breeding material remaining on site and may

increase the risk of localized outbreaks [9].

Another method to reduce the availability of breeding

material in sites is eliminating exposed roots and stumps.

One approach is the burning of slash and branches.

However, a fire burn is also commonly used to reduce the

accumulation of general burnable material [5] and, while it

may help to control some insects and diseases, there is

evidence that a burn can lead to increased bark beetle

damage [5, 9]. Accidental fires which cause damage to

large areas of pine forests results in many severely injured

trees that are easily colonized by bark beetles, boosting

their population levels, which in turn, leads to outbreaks

that affect trees that would otherwise survive fire, and

in extreme cases leads to infestation of nearby healthy

stands [15]. Santolamazza-Carbone et al. [73] recom-

mended removal of injured and dying pines after studying

bark beetle and other insect colonization of P. pinaster

after a fire in Spain. Mechanical methods for reducing fuel

build up in managed forests, such as chipping or lopping

and scattering of small trees, can also lead to higher bark

beetle populations [74].

Prevention can also involve planting less susceptible

species, decreasing rotation length and planting mixed

species and differing age stands [9]. Tree species diversity

has been found to result in reduced herbivory by insects,

including bark beetles [8]. For prevention of Dendroctonus

adjunctus Blandford, replacement of the Mexican pine

Pinus rudis Endl. by less susceptible species (e.g. Pinus

ayacahuite Ehrenb. ex. Schtdl or Pinus pseudostrobus Lindl.)

and avoidance of fellings during the swarming season

were recommended [75]. Trees may also be selected

for bark beetle resistance [32, 76]. Pinus spp. defence

mechanisms against bark beetles include oleoresins, a

complex mixture of terpenoids consisting mainly of two

fractions, the volatile turpentine and the more solid rosin

fraction. Although many of the turpentine components

have been shown to be toxic for insects and microbes,

the crystallization of the rosin fraction provides the

tree with a system that can potentially create a physical

barrier around wounds, often trapping boring insects.

As terpene composition is a heritable trait [77], it could

be possible to select trees with higher levels of pro-

duction of oleoresins. Many of the genes involved in

resin-based defence mechanisms have been described

and could potentially assist in generating transgenic con-

ifers with increased defence capabilities [78]. As

host monoterpenes may be used as kairomones (sensu

Nordlund [79]), sometimes combined with aggregation

pheromones to locate the plants both by bark beetles

and their natural enemies [80, 81], or as their own

pheromone precursors [61], more sophisticated strate-

gies altering hosts oleoresin chemistry could also pro-

vide foresters with improved conifers. In any case,

the relationship between specific terpenoids and tree

resistance to insects is not well known [82]. Current

selection processes for trees with better commercial

production characteristics (i.e. for fast growth, form, etc.)

may result in greater tree susceptibility, as such breeding

may be at the expense of natural bark beetle defence

systems.
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For D. frontalis control in the USA, aerial surveys

are used to detect infestations. Observing changes

in crown colour can be used to detect beetle damage,

with the obvious limitation that time of year and envir-

onmental influences can make such changes difficult to

categorize [83].

The ability to predict outbreaks can significantly im-

prove bark beetle control efforts. There have been

attempts to model outbreaks with some success (e.g.

[84–86]). Outbreaks of D. frontalis have been correlated

with previous outbreaks in regions of the south-eastern

USA [9], suggesting movement of adults is not expansive.

Factors that influence bark beetle attack includes stand

density, stand age and tree diameter [9, 11]. Nelson et al.

[87] suggested that risk models for mountain pine beetle

had been based on indices of stand susceptibility and

lacked ecological understanding. They provided an ap-

proach that incorporated some ecological factors.

Modelling and prediction have also included consideration

of the effect of climate change on beetle outbreaks and

distribution [88].

Chemical control

Chemical pesticides have been widely used for insect

control in many agricultural and forestry situations. Use in

pine forests is dependent on economics and practicalities

of application and efficacy, and availability of products. The

main chemicals reportedly used have been organopho-

sphates, carbamates and pyrethroids.

Carbaryl (1-naphthyl methyl carbamate) has been

used for 40 years in the western USA for control of bark

beetles, particularly D. ponderosae. Hastings et al. [89]

reviewed the research prior to 2000, reporting spray

applications to individual trees were effective at reducing

tree mortality associated with bark beetles. Application

rates of 1–2% a.i. and at 18–28 litres/tree are used, applied

with a hydraulic sprayer [90]. Carbaryl is not as effective

in preventing attack of D. frontalis [91, 92]. Typically,

15–30 m no-spray buffers around waterways are recom-

mended, as carbaryl has high toxicity to Plecoptera and

Ephemeroptera [90]. Although carbaryl is considered one

of the most effective, economically viable and ecologically

compatible insecticides for protecting individual trees

[93], future availability is not assured [94].

Other chemical pesticides, such as alphamethrin (a

pyrethroid), have been used to spray infested log piles to

kill emerging beetles and reduce subsequent colonisation

[14]. Spraying sections of logs with permethrin, bifenthrin

and carbaryl provided greater than 70% protection

against the pine engraver, I. pini (Say) and other Ips spp.

13 months after treatment [95]. Chlorpyifos (organo-

phosphate) formulations have been used to prevent

D. frontalis attack [83], but registration for this use has

been cancelled in the USA [94]. Aluminium phosphide, a

strong poison used to control rodents, has been used to

control D. valens in China, and dimethyl dichloroviny phos-

phate (DVVP) or omethoate (both organophosphates)

have been injected into bark beetle galleries [19]. In

China, during flight periods, direct control methods

included spraying insecticides such as phorate, mono-

crotophos (organophosphates), cypermethrin (synthetic

pyrethroid) and ‘phoxime’ have been attempted. Use

of these insecticides for D. valens was reported to kill

90–98% of beetles, although no specific data were

given [19].

Given the sub-cortical life history of bark beetles,

the application of chemical control is very challenging,

especially at the forest scale. Attempts to control emer-

gence of beetles from trees were reviewed by Hastings

et al. [89], with some success reported using diesel

or toxic pesticides such as lindane, on trees that were

infested with Dendroctonus spp.; however, these pesticides

also affected non-target invertebrates. Carbaryl has some

effect against emerging brood [89].

Neem, extracted from the seeds of Azadirachta indica,

has been used against a number of insect pests. The active

agent, azadirachtin, has been investigated as a systematic

insecticide for D. ponderosae control. When applied to the

xylem of P. contorta, Naumann and Rankin [96] found

almost total prevention of development to adult of the

beetle. However, surface treatment with neem-based

insecticides did not repel or deter D. ponderosae [97].

Systemic insecticide application is a more environ-

mentally safe alternative to broadcast spray. Grosman

et al. [98] reported trunk injections with small amounts of

emamectin benzoate (avermectin insecticide) and fipronil

(phenylpryazole insecticide) helped reduce D. brevicomis

LeConte and D. ponderosae attack in ponderosae and

lodgepole pines, respectively. The systemic application

of fipronil was ineffective with high mortality of fipronil-

treated trees in the third year, but emamectin benzoate in

ponderosa pine was effective in the third year after

application against D. brevicomis.

In general, because of the expense, safety and applica-

tion issues, insecticides are more useful for protection of

individual, high-value trees than whole forest stands [93].

Some chemical pesticides have been withdrawn (e.g.

[94, 99]), or are currently under review as new evidence

suggests unintentional effects [90, 100, 101]. For example,

the US Environmental Protection Agency banned the uses

of most organophosphates in 2001 for residential use

and are currently expressing concerns over other ap-

plications. Agents that can be used directly against

scolytid pests but are more environmentally benign and

effective are being sought. For example, Fettig et al. [94]

showed efficacy of two new ‘reduced risk’ insecticides,

cyantraniliprole (Cyazypyr1) and chlorantraniliprole

(Rynaxypyr1) to D. ponderosae in the laboratory. It is

expected that more new compounds will be examined

for use against bark beetles as they continue to grow

as a problem, but clearly chemical control approaches

have not been successful in reducing bark beetles as
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threats to pines generally. Given the ecological impacts of

broad-spectrum chemical insecticides, other approaches

are likely to be favoured.

Semiochemical approach

Scolytid beetles have evolved a number of behavioural

modifications to assist in the search for appropriate

breeding substrates and overcoming of host tree defen-

ces, including release and response to semiochemicals.

Given the importance of chemical cues in the behaviour of

scolytids, their applied use for bark beetle control has

been studied for a number of years [102, 103]. Together

with the development of trapping technology and as-

sociated methodology (e.g. [104, 105]), multiple strategies

using semiochemicals have arisen [106].

Usages of synthetic attractants (aggregation phero-

mones or host kairomones, e.g. a-pinene) include mon-

itoring and mass trapping or tree baiting. Commercially

available traps and lures are recognized as effective tools

for monitoring both local and exotic bark beetles [103,

107, 108], and were found to be an economical substitute

for traditional trap-tree methods [103]. The use of

pheromone traps or pheromone-baited trees have been

used to forecast beetles populations [109, 110]. Attempts

to control epidemic outbreaks by means of mass trapping

have shown that, alone, it has not been particularly suc-

cessful [6, 111, 112], although using this method in an

integrated pest management programme seems to reduce

damage by bark beetles [111]. In selected situations, such

as isolated plantings, pheromone-based trapping may be

effective [18, 113]. Trapping was used to reduce D. valens

attacks in China, with a blend of a-pinene, b-pinene and

3-carene successfully decreasing the average number of

attacks per tree by 59% and area infested by 64.4% [19].

Aggregation pheromones have also been using in tree

baiting strategies aiming at four operational applications

for D. ponderosae: (i) detection and monitoring, (ii) con-

tainment and concentration, (iii) post-logging mop-up and

(iv) spot suppression [114]. A modified usage of semio-

chemicals to aggregate beetles on breeding substrate has

also been developed for such situations, where insects die

upon landing, a strategy termed ‘lure and kill’ [115]. Thus,

trap trees can be removed before new beetles emerge

or treated with pesticides to reduce numbers or kill

colonizing beetles [116].

Another method is to use repellent or inhibitory com-

pounds signalling inappropriate hosts, to provide forest

managers with tools for integrated pest management.

Discovered soon after the descriptions of the first bark

beetle pheromones, ‘pheromonal masks’ such as the MCH

[117], or verbenone (4,6,6-trimethylbicyclo[3.1.1.]hept-

3en-2-one) [118] have attracted much interest in the

study of semiochemical-based management of bark

beetles. Verbenone is now recognized to have a general

inhibitory effect on bark beetles [119]. It is produced

through a number of pathways, including auto-oxidation

of a-pinene [120], by bark beetles themselves [121] or

by the action of yeasts and other bark beetle associated

micro-organisms [122]. Although the main role of ver-

benone in the population dynamics of bark beetles has

not been completely clarified, it seems that its effect

derives from linkage it may have with host tissue decay

[123] or intraspecific competition [124]. This compound

has been well studied, but inconsistent results (e.g. [125,

126]) slowed its practical application. Recent studies

have found methods to overcome previous problems,

and promising results have been obtained when dosages

have been increased [15, 120, 127, 128]. The combined

use with attractants in the strategy known as ‘push

and pull’ [115], resulted in promising results for

D. ponderosae [129] or the complete protection of a rare

P. torreyana stand [18].

It is well known that compounds that may be part of

the aggregative pheromonal blend of one species may

repel the aggregation of close competitors. Thus, whereas

ipsenol (a very common Ips semiochemical) attracts

Pytiokteines curvidens, I. typographus is repelled when this

compound is used [103]. This type of response has been

studied with the aim of controlling outbreaks through

enhanced competition [130, 131] or by combined usage

of other known inhibitors such as verbenone [132].

In addition to verbenone, volatiles that indicate the

presence of non-host trees have been investigated for

scolytid control [133]. These non-host volatiles (NHVs)

have mainly been isolated from angiosperm trees for use

against scotylids that attack conifers. The NHVs have

shown repellent effects against a number of scolytids (e.g.

[134–136]). For example, Jactel et al. [14] tested blends of

green leaf and bark alcohols to disrupt attraction to

pheromones of I. sexdentatus, showing that it was indeed

repelled. The efficiency of NHVs has also been proven

while protecting P. contorta [137]. The successful use

of non-host tree volatiles may indicate that increased

diversity of tree species does play a role in reducing

forests susceptibility to bark beetle damage [14, 55].

Natural enemies

An attractive approach for control of pest insects, espe-

cially exotic invaders, has been the use of natural enemies:

predators, parasites and pathogens. Natural enemies can

maintain population levels at below damage thresholds in

many natural situations [138, 139]. The lack of natural

enemies in exotic environments can contribute to beetles

reaching damaging populations. There have been many

studies on natural enemies of bark beetles, but less on

those affecting beetles on pines.

Predators and parasites

Moeck and Safranyik [138] and Kenis et al. [139]

thoroughly reviewed the literature on predators and
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parasites of all bark beetles, from natural occurrence

through to their use in biological control. Several bird

species (woodpeckers and passeriformes) [139] and

small mammals [138] are known to consume bark beetles,

but it is unlikely that vertebrates could be used as practical

control agents given polyphagous feeding habits and other

practical considerations. Among the insect predators, the

clerid beetles (Coleoptera: Cleridae) are the most pre-

valent of the 24 Coleoptera families listed as associated

with bark beetles [138]. Of the pine pests, the clerid,

Thanasimus dubius (Fabr.), attacks T. piniperda adults and

other pine scolytids such as Ips spp. in North America

[140] and Thanasimus formicarius (L.) is a major bark beetle

predator in Europe, including T. piniperda [141, 142].

Adult clerids are attracted by bark beetle pheromones,

so will be attracted to heavily attacked trees [60, 143,

144]. Predacious beetles can also be attracted to tree

volatiles, such as a-pinene and ethanol [145, 146]. Pre-

dators often appear on trees at the same time as bark

beetles, whereas parasitoids arrive later [139]. Other

important predators are found in the Trogositidae and

Rhizophagidae (Coleoptera). Trogositid beetles prey on

adults and larvae of some bark beetles and, like clerids,

can be attracted to volatiles associated with bark beetles,

but are less well studied than clerids [138].

Moeck and Safranyik [138] report 15 families of Diptera

contain known predators. Ants, some bug species, spi-

ders, mites, pseudoscorpions and dragonflies have also

been reported as predators but have not been used in

control efforts.

The impact of predation on bark beetle populations is

rarely documented. The amount of prey capable of being

eaten, fecundity rates and environmental constraints all

affect predator success. As summarized in Kenis et al.

[139], some species are voracious: T. formicarius can

reduce brood by over 80% and one adult can consume

three adult Ips per day. After outbreaks of Ips acuminatus

(Gyll.) and T. piniperda in Scots pine in France in

1978–1979, 31 predators and 14 parasitoids were found

associated with the populations, with three predators

(T. formicarius, Rhizophagus depressus (Fab.) and Medetera

spp.) abundant [142, 147]. R. depressus was found to

reduce T. piniperda by 41% and T. formicarius by 81% in

exclusion experiments [141]. Most of these predators

attacked populations during early spring, while the other

predators and parasites were active later in the season,

suggesting a complementary action by a suite of natural

enemies.

Parasitoids of bark beetles are contained in only a few

families [138, 139]. The Braconidae (Hymenoptera) are

the most prolific, and a few species of Pteromalidae

(Hymenoptera), but there are few reports of species

specifically acting on pine bark beetles. The bark beetle

larval and pupal parasitoid, Roptrocerus xylophagorum

(Ratzeburg), has a host range that includes pine-associated

beetles in Europe and North America such as I. typo-

graphus, T. piniperda, D. frontalis and D. brevicomis [148].

This parasitoid was successfully introduced into Australia

in the early 1980s as a biological control agent of Ips

grandicollis Eichhoff [91].

There have been few other attempts to use predators

and parasites for control of bark beetles which use some

type of intervention, rather than relying on natural inci-

dence [138, 139, 143]. There are several methods that

could be employed: mass rearing and release [149], field

collection and release, conservation management to en-

hance occurrence and even supplementary feeding, where

the natural enemy is provided an alternate food source

such as nectar for some parasitoids to extend their period

of activity [83]. One successful programme utilizing a

predator species has been the use of Rhizophagus grandis

Gyll. for control of the spruce beetle, Dendroctonus micans

(Kugelann). Although not a pine pest, this programme

is a good example of use of a predator. As reviewed in

Kenis et al. [139], the predator has been reared, released

and established in Georgia, Turkey, France, Belgium and

the UK.

In some cases, native predators can prey on introduced

species. Yan et al. [19] listed a number of Chinese pre-

dator species for D. valens, with an adult Tenebrionidae

species (Coleoptera) described as a highly effective pre-

dator of D. valens adults in the laboratory. However, this

is not common. Therefore, importation and release of

known natural enemies is a more common approach.

R. grandis was imported into China in 2000, and is now an

important predator of D. valens [150]. Several attempts to

introduce natural enemies into New Zealand for control

of H. ater have been unsuccessful [139]. A Rhizophagus

species and a pteromalid, Rhopalicus tutela (Förster) were

introduced to New Zealand [151]. R. tutela was also

released in Canada in 1934, but also failed to establish

[138].

Clerid beetles have been suggested as the most ef-

fective and promising predators for some scolytids [143,

152], but practical use in pines has not been success-

fully reported. For D. ponderosae in Canada, Moeck and

Safranyik [138] recommended inundative releases of

native Cleridae beetles against low populations. The

predators Enoclerus sphegeus F., Enoclerus lecontei Wolcott

and Thanasimus undatulus (Say) were tested for ability

to reduce populations of bark beetles, but because of

cannibalism, rearing was difficult and expensive, and

no inundative release was attempted [143]. Imported

T. formicarius were not released as they could interbreed

with T. undatulus and were likely to predate on the ben-

eficial competing beetle, I. pini. The clerid T. formicarius,

collected in Europe, was released against the southern

pine beetle in the eastern USA in 1882 and 1883 and

against H. ater and H. ligniperda in New Zealand, but has

had little impact on population levels [151, 153].

Microbial pathogens

Microbes that are pathogenic to insects have been

developed into practical control agents [154] and have
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potential for scotylid control if (a) suitable agents can be

found; (b) application methods that can target the insects

in field situations can be developed and (c) the production

and application of the microbe is economically viable.

A number of fungal, protozoan, bacterial and nematode

entomopathogens have been reported attacking pest

scolytid species. Interestingly, occurrence of viral patho-

gens seems rare, with only some ‘viral-like particles’

and an entomopoxvirus reported [155, 156]. Herein, we

concentrate on pathogens of pine-associated bark beetles,

but there are substantial reviews of pathogens associated

with scolytids (e.g. [157–160]).

Fungal pathogens in the genera Beauveria, Metarhizium

and Paecilomyces are some of the most common and

broad host range insect pathogenic microbes known.

Unsurprisingly, representatives of these genera have

been isolated from a range of scolytids that attack

pines. Beauveria bassiana (Bals.) Vuill., Beauveria brongniartii

(Sacc.) Petch, Beauveria caledonica Bissett & Widden,

Isaria farinosa (Holmsk.) Fr (=Paecilomyces farinosus) Isaria
fumosorosea Wize (=Paecilomyces fumosoroseus), Paecilo-

myces viridis Seg. et al. and Metarhizium anisopliae (Metsch.)

Sorokin (Ascomycetes) have been described from various

species in Europe (e.g. [157, 161–163]), China [19] and

New Zealand [162, 164]. In North America, there are

also reports of some of these species attacking bark

beetles. For example, Safranyik et al. [152] reported on

evaluation of B. bassiana, P. farinosus and M. anisopliae for

control of I. pini. B. bassiana was further investigated as

a potential biopesticide but found to lack the specificity

needed to target a single bark beetle species [152].

B. bassiana has also been found to be pathogenic to pre-

dators of bark beetles, such as the predator, T. formicarius.

However, field doses targeting and killing I. sexdentatus

did not affect the predator, suggesting susceptibility

was higher among bark beetles than the predator [165].

A benefit of using entomopathogenic fungi is that, as the

mode of infection is via direct penetration of the cuticle

and the infective stage does not need to be ingested, they

can often kill larvae, pupae and adults. Most pathogens,

such as bacteria, viruses and protozoa, act after infective

propagules are ingested [159], meaning pupae can not be

targeted. In addition to B. bassiana, H. ater in New Zealand

are killed by two other entomopathogenic fungi,

Metarhizium flavoviride var. pemphigi Driver & Milner and

Hirsutella guignardii (Maheu) Samson et al. [166].

Use of fungi in the field is rarely reported for pine

scoltyids. In Poland, B. bassiana was sprayed during the

early flight period of T. piniperda [167]. Scots pine trap

trees were sprayed with the fungus but the infection rate

in beetles trapped 2 months later was only 3–7%, although

that was higher than in unsprayed trees (�1%) [167].

Isolation of bacteria from dead insects is common,

so reports of bacterial pathogens need to be accompanied

by demonstration of pathogenicity. Although Moore

[168] recorded several potentially pathogenic bacteria

from D. frontalis, bioassay found that only Pseudomonas

aeruginosa (Schröter) Migula, Pseudomonas fluorescens

(Flügge) Migula and Serratia marcescens Bizio were patho-

genic to D. frontalis [169]. In addition, generalist pathogens

Bacillus cereus Frankland & Frankland, Bacillus thuringiensis

Berliner and B. thuringiensis subsp. kenyae were pathogenic

to D. frontalis. B. thuringiensis subsp. thuringiensis are the

active agents in the largest number of biopesticides pro-

duced around the world and, although the B. thuringiensis

has coleopteran-active toxins in some strains, there are

very few reports of toxicity to bark beetles [170]. Cane

et al. [171] found that no B. thuringiensis-based product

with reported activity against Coleoptera was effective

against adults of Ips calligraphus (Germar) and D. frontalis in

laboratory bioassays.

Entomopathogenic nematodes, especially those in the

genera Steinernema and Heterorhabditis, have been devel-

oped as commercially available biopesticides for pest

insect species, including Coleoptera [172]. As with the

fungal pathogens, a benefit of some nematodes is that

they can attack non-feeding stages because they penetrate

hosts directly. There are reports of bark beetle sus-

ceptibility to nematodes. Steinernema ceratophorum

Jian et al. could cause 90% mortality of D. valens adults

in the laboratory, but has not been recorded in the field

in China [19]. Similarly, Scolytus multistriatus (Marsham)

and D. ponderosae were susceptible to Steinernema

(=Neoaplectana) carpocapsae (Weiser), another common

generalist entomopathogenic nematode [173]. In Italy,

several species of steinernematid and heterorhabditid

nematodes were active against T. piniperda [174]. Injection

of Heterorhabditis bacteriophora into the entrance of bark

beetle tunnels did lead to infection of beetles inside.

However, field application data are lacking.

Protozoan pathogens have also been reported from

bark beetles. Protozoan disease is usually slow to kill, but

may exert some natural control on beetles populations

(e.g. [156]). Takov et al. [175] listed 31 protozoan and

microsporidian (sometimes classified as protozoan) from

14 genera pathogenic to bark beetles. The pathogen

complex of the bark beetle species were 6% amoebae,

19% eugregarines, 26% neogregarines and 49% micro-

sporidia. Microsporidia (such as Nosema spp.) are com-

mon pathogens of many insect groups and one of the

most studied pathogen groups attacking scolytids,

although not those species specifically associated with

pines [175]. Among the pine pests, Nosema calcarati

Purrini & Halperin was found attacking all life stages of

Pityogenes calcaratus Eichhoff in Israel [176]. Protozoans

are unlikely to be used in commercial biopesticide for-

mulations given difficulties in production and that they are

slow in killing.

Laboratory susceptibility to pathogens does not always

translate into field control, given the cryptic habitats

of the beetles. For example, D. frontalis is susceptible

to nematodes Steinernema [Neoaplectana] feltiae (Filipjev),

S. [N.] glaseri (Steiner) and H. bacteriophora Poinar

(=Heterorhabditis heliothidis), but no infections were found
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after spray application onto pine bolts [177]. Innovative

strategies for delivery would have to be developed, how-

ever, to circumvent the cryptic habits of the beetles [171].

One approach that has not been investigated but may

have potential is the use of insect pathogens as endo-

phytes of pines. The fungus B. bassiana has been found to

persist endophytically in a number of plant species,

including P. radiata [178] and Pinus monticola Douglas ex

D. Don [179]. Effects of endophytes on insects feeding

on pines has yet to be determined, but if the fungus

presence can reduce beetle infestations it may be feasible

to artificially inoculate pines to maintain an endophytic

entomopathogenic fungus. Another strategy is to use the

strong attraction of bark beetles to semiochemicals for a

‘lure and infect’ approach [180]. The ability of pathogens

to move from a contaminated beetle to others through

contact [181] suggests this method might be feasible for

some bark beetle populations.

Conclusions

Scolytid beetles are a serious pest of production pine

species around the world. Given their aggregation behav-

iour and vectoring ability of disease-causing microbes,

they can cause massive tree losses worldwide. Manage-

ment approaches, such as removal of trees and thinning,

have been used to reduce damaging populations, but can

be expensive or impractical in some situations. Chemical

pesticides have been used for control, but are also ex-

pensive and can be associated with serious environmental

and health concerns. Bark beetles use a range of semi-

ochemicals to modify conspecific behaviour or find hosts

and these pheromones and kairomones have shown

promise as control tools. Natural enemies are known to

regulate some beetle populations and have been investi-

gated for introduction to where exotic pine species are

infested with exotic species of bark beetle. Predator and

parasitoid introductions have largely been unsuccessful.

Many natural enemies lack specificity or have environ-

mental requirements not met in non-native ranges. Pre-

dator rearing for release is labour-intensive and difficult,

often expensive and impractical. Microbial pathogens have

also shown promise, but the cryptic habitat of larvae and

pupal stages within trees makes inoculation with microbes

difficult.

It is likely that control will require a combination of

agents and management practices to be successful. Some

current methods can interfere with each other, such as

control of bark beetle populations using pheromones can

be destructive to coleopteran predator populations if

not managed properly [182]. Novel methods and/or

integrated approaches using the best available options

is the most likely to succeed. A combination of careful

management methods, semiochemical use and environ-

mentally safe insect killing agents that can access cryptic

habitats are required. It has been demonstrated that

predators can be selectively attracted to pines without

attracting the bark beetle target and beetles can be

trapped without attracting predators. For example, the

predator T. dubius was attracted to frontalin plus

a-pinene, but the bark beetle I. pini was not [182]. Con-

versely, increasing numbers of I. pini were trapped when

increasing concentrations of lanierone plus ipsdienol were

used, but trap catches of predators, including T. dubius, did

not increase with this mixture [144]. There is potential,

therefore, to selectively enhance predation and decrease

trap catches of natural enemies. Timing of deployment of

semiochemical traps for mass-trapping can also have a

major impact on the pest to predator ratio in traps [183].

The success of verbenone is evidence of the potential

of semiochemicals, but other compatible agents are

required.
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